Contents

1	Intr	oduction	1
	Exe	reises	8
2	${f The}$	e Basic Theory	9
	2.1	Weierstrass Equations	9
	2.2	The Group Law	12
	2.3	Projective Space and the Point at Infinity	18
	2.4	Proof of Associativity	20
		2.4.1 The Theorems of Pappus and Pascal	32
	2.5	Other Equations for Elliptic Curves	35
		2.5.1 Legendre Equation	35
		2.5.2 Cubic Equations	35
		2.5.3 Quartic Equations	36
		2.5.4 Intersection of Two Quadratic Surfaces	39
	2.6	The j-invariant	41
	2.7	Elliptic Curves in Characteristic 2	44
	2.8	Endomorphisms	46
	2.9	Singular Curves	55
	2.10	Elliptic Curves mod n	59
		rcises	67
3	Tors	sion Points	73
Ŭ	3.1	Torsion Points	73
	3.2	Division Polynomials	76
	3.3		82
			86
4	TH:	otic Curves over Finite Fields	89
4	4.1		89
	4.1		$\frac{89}{92}$
	$\frac{4.2}{4.3}$		94 96
	4.0		90 96
			• •
		0 0	98 00
			$\frac{00}{02}$
	A A		03
	4.4		05_{10}
	4.5	Schoof's Algorithm 1	13

	4.6	Supersingular Curves	120
		rcises	130
	Line		
5	The	e Discrete Logarithm Problem	133
	5.1	The Index Calculus	134
	5.2	General Attacks on Discrete Logs	136
		5.2.1 Baby Step, Giant Step	136
		5.2.2 Pollard's ρ and λ Methods	137
		5.2.3 The Pohlig-Hellman Method	141
	5.3	The MOV Attack	144
	5.4	Anomalous Curves	147
	5.5	The Tate-Lichtenbaum Pairing	153
	5.6	Other Attacks	156
	Exe	rcises	156
0	ъц	ptic Curve Cryptography	159
6	6.1	The Basic Setup	159
	6.1	Diffie-Hellman Key Exchange	$109 \\ 160$
	6.2	· -	163
	6.4	Massey-Omura Encryption	$163 \\ 164$
	$\begin{array}{c} 0.4 \\ 6.5 \end{array}$		$\frac{104}{165}$
		ElGamal Digital Signatures	$165 \\ 168$
	$\begin{array}{c} 6.6 \\ 6.7 \end{array}$	The Digital Signature Algorithm	169
			$\frac{109}{173}$
	6.8 E	A Cryptosystem Based on the Weil Pairing	$173 \\ 175$
	Exe	rcises	170
7	Oth	er Applications	179
	7.1	Factoring Using Elliptic Curves	179
	7.2	Primality Testing	184
	Exe	rcises	187
8	Elli	ptic Curves over Q	189
	8.1	The Torsion Subgroup. The Lutz-Nagell Theorem	189
	8.2	Descent and the Weak Mordell-Weil Theorem	$\frac{109}{198}$
	8.3	Heights and the Mordell-Weil Theorem	206
	8.4		$\frac{200}{214}$
	$\frac{0.4}{8.5}$	Examples The Height Pairing	$\frac{214}{221}$
	8.6		$\frac{221}{222}$
	8.0	Fermat's Infinite Descent	$\frac{222}{227}$
	8.1 8.8	- · · · -	$\frac{227}{229}$
		A Nontrivial Shafarevich-Tate Group	
	8.9 Ever	Galois Cohomology	$\frac{234}{244}$
	Exer	cises	444

x

9	Elliptic Curves over C	247			
	9.1 Doubly Periodic Functions	247			
	9.2 Tori are Elliptic Curves	257			
	9.3 Elliptic Curves over C	262			
	9.4 Computing Periods	275			
	9.4.1 The Arithmetic-Geometric Mean	277			
	9.5 Division Polynomials	283			
	Exercises	291			
10	Complex Multiplication	295			
	10.1 Elliptic Curves over C	295			
	10.2 Elliptic Curves over Finite Fields	302			
	10.3 Integrality of j-invariants	306			
	10.4 Numerical Examples	314			
	10.5 Kronecker's Jugendtraum	320			
	Exercises	321			
11	Divisors	323			
	11.1 Definitions and Examples	323			
	11.2 The Weil Pairing	333			
	11.3 The Tate-Lichtenbaum Pairing	338			
	11.4 Computation of the Pairings	341			
	11.5 Genus One Curves and Elliptic Curves	346			
	Exercises	353			
12	Zeta Functions	355			
	12.1 Elliptic Curves over Finite Fields	355			
	12.2 Elliptic Curves over Q	359			
	Exercises	368			
19	Fermat's Last Theorem	371			
19	13.1 Overview	371 371			
	13.2 Galois Representations	$371 \\ 374$			
	13.3 Sketch of Ribet's Proof	$\frac{374}{380}$			
	13.4 Sketch of Wiles's Proof	$\frac{380}{387}$			
A	Number Theory	397			
В	Groups	403			
С	Fields	407			
\mathbf{Re}	References				
Index					