Table of Contents

PART ONE

Preface		xiii
	tion 1: Learning Inders Duit & David F. Treagust	
1.1	REINDERS DUIT & DAVID F. TREAGUST Learning in Science – From Behaviourism Towards Social Constructivism and Beyond	3
1.2	CLIVE SUTTON New Perspectives on Language in Science	27
1.3	WILLIAM W. COBERN & GLEN S. AIKENHEAD Cultural Aspects of Learning Science	39
1.4	JOHN K. GILBERT & CAROLYN J. BOULTER Learning Science Through Models and Modelling	53
1.5	PHILIP H. SCOTT & ROSALIND H. DRIVER Learning About Science Teaching: Perspectives From an Action Research Project	67
1.6	KATHLEEN E. METZ Scientific Inquiry Within Reach of Young Children	81
1.7	CLARK A. CHINN & WILLIAM F. BREWER Theories of Knowledge Acquisition	97
1.8	JACQUES DÉSAUTELS & MARIE LAROCHELLE The Epistemology of Students: The 'Thingified' Nature of Scientific Knowledge	115
	ion 2: Teaching neth Tobin	
2.1	KENNETH TOBIN Issues and Trends in the Teaching of Science	129
2.2	JOHN R. BAIRD A View of Quality in Teaching	153

2.3	WOLFF-MICHAEL ROTH Teaching and Learning as Everyday Activity	169
2.4	WYNNE HARLEN Teaching For Understanding in Pre-Secondary Science	183
2.5	PETER W. HEWSON, MICHAEL E. BEETH & N. RICHARD THORLEY Teaching for Conceptual Change	199
2.6	PAUL HOBDEN The Role of Routine Problem Tasks in Science Teaching	219
2.7	DOROTHY GABEL The Complexity of Chemistry and Implications for Teaching	233
2.8	VINCENT N. LUNETTA The School Science Laboratory: Historical Perspectives and Contexts for Contemporary Teaching	249
	ion 3: Educational Technology	
3.1	MARCIA C. LINN The Impact of Technology on Science Instruction: Historical Trends and Current Opportunities	265
3.2	BARBARA Y. WHITE Computer Microworlds and Scientific Inquiry: An Alternative Approach to Science Education	295
3.3	DANIEL C. EDELSON Realising Authentic Science Learning through the Adaptation of Scientific Practice	317
3.4	NANCY BUTLER SONGER Can Technology Bring Students Closer to Science?	333
3.5	ROBERT D. SHERWOOD, ANTHONY J. PETROSINO, XIAODONG LIN & COGNITION AND TECHNOLOGY GROUP AT VANDERBILT Problem-Based Macro Contexts in Science Instruction: Design Issues and Applications	349
3.6	MICHELE WISNUDEL SPITULNIK, STEVE STRATFORD, JOSEPH KRAJCIK & ELLIOT SOLOWAY Using Technology to Support Students' Artefact Construction in Science	363

		Table of Contents	vii
3.7	HORST P. SCHECKER Integration of Experimenting and Modelling by Adv Educational Technology: Examples from Nuclear	/anced	
3.8	ANGELA E. McFARLANE & YAEL FRIEDLER	of	383 399
	etion 4: Curriculum a van den Akker		
4.1	JAN VAN DEN AKKER The Science Curriculum: Between Ideals and Outcom	nes	421
4.2	REUVEN LAZAROWITZ & RACHEL HERTZ-LAZAROWITZ Cooperative Learning in the Science Curriculum	•	449
4.3	JOHN WALLACE & WILLIAM LOUDEN Curriculum Change in Science: Riding the Waves of 1	Reform 2	471
4.4	RODGER W. BYBEE & NAVA BEN-ZVI Science Curriculum: Transforming Goals to Practices	2	1 87
4.5	DONNA F. BERLIN & ARTHUR L. WHITE Integrated Science and Mathematics Education: Evolution and Implications of a Theoretical Model		199
4.6	MICHAEL R. ABRAHAM The Learning Cycle Approach as a Strategy for Instru Science		113
Section 5: Learning Environments Barry J. Fraser			
5.1	BARRY J. FRASER Science Learning Environments: Assessment, Effects a Determinants		27
5.2	THEO WUBBELS & MIEKE BREKELMANS The Teacher Factor in the Social Climate of the Classr	oom 56	65
5.3	CAMPBELL J. McROBBIE, DARRELL L. FISHER & ANGELA F. L. W. Personal and Class Forms of Classroom Environment Instruments	70NG 58	R1

viii	Table of Contents	
5.4	HANNA J. ARZI Enhancing Science Education Through Laboratory Environments: More Than Walls, Benches and Widgets	595
5.5	BONNIE SHAPIRO Reading the Furniture: The Semiotic Interpretation of Science Learning Environments	609
5.6	KENNETH TOBIN & BARRY J. FRASER Qualitative and Quantitative Landscapes of Classroom Learning Environments	623
	PART TWO	
	tion 6: Teacher Education th Munby & Tom Russell	
6.1	HUGH MUNBY & TOM RUSSELL Epistemology and Context in Research on Learning to Teach Science	643
6.2	RONALD W. MARX, JOHN G. FREEMAN, JOSEPH S. KRAJCIK & PHYLLIS C. BLUMENFELD Professional Development of Science Teachers	667
6.3	BEVERLEY BELL Teacher Development in Science Education	681
6.4	JEFF NORTHFIELD Teacher Educators and the Practice of Science Teacher Education	695
6.5	KATHRYN F. COCHRAN & LORETTA L. JONES The Subject Matter Knowledge of Preservice Science Teachers	707
6.6	THOMAS M. DANA & DEBORAH J. TIPPINS Portfolios, Reflection and Educating Prospective Teachers of Science	719
6.7	CHAO-TI HSIUNG & HSIAO-LIN TUAN Science Teacher Education in Selected Countries in Asia	733
6.8	ONNO DE JONG, FRED KORTHAGEN & THEO WUBBELS Research on Science Teacher Education in Europe: Teacher Thinking and Conceptual Change	745

Section 7	Assessment and Evaluation
Pinchas To	

	PINCHAS TAMIR	
7.1	Assessment and Evaluation in Science Education: Opportunities to Learn and Outcomes	761
7.2	DREW H. GITOMER & RICHARD A. DUSCHL Emerging Issues and Practices in Science Assessment	791
7.3	PAUL BLACK Assessment by Teachers and the Improvement of Students' Learning	811
7.4	MICHAL S. LOMASK, JOAN BOYKOFF BARON & JEFFREY GREIG Large-Scale Science Performance Assessment in Connecticut: Challenges and Resolutions	823
7.5	GAALEN L. ERICKSON & KAREN MEYER Performance Assessment Tasks in Science: What Are They Measuring?	845
	ion 8: Equity e R. Baker	
8.1	DALE R. BAKER Equity Issues in Science Education	869
8.2	LESLEY H. PARKER & LÉONIE J. RENNIE Equitable Assessment Strategies	897
8.3	JAN HARDING Grass Roots Equity Initiatives	911
8.4	ROBERTTA H. BARBA & KAREN E. REYNOLDS Towards an Equitable Learning Environment in Science for Hispanic Students	925
8.5	ALEJANDRO GALLARD, ELIZABETH VIGGIANO, STEPHEN GRAHAM, GAIL STEWART & MICHAEL VIGLIANO The Learning of Voluntary and Involuntary Minorities in Science Classrooms	941

x 2	Table of Contents	
8.6	ROSE N. AGHOLOR & PETER OKEBUKOLA The Junior Engineers, Technicians and Scientists (JETS) Program in Nigeria	955
8.7	SHARON E. NICHOLS, PENNY J. GILMER, ANTHONY D. THOMPSON & NANCY DAVIS Women in Science: Expanding the Vision	967
	tion 9: History and Philosophy of Science hael R. Matthews	
9.1	MICHAEL R. MATTHEWS The Nature of Science and Science Teaching	981
9.2	ROBERT N. CARSON Science and the Ideals of Liberal Education	1001
9.3	FABIO BEVILACQUA & ENRICO GIANNETTO The History of Physics and European Physics Education	1015
9.4	ARTHUR STINNER & HARVEY WILLIAMS History and Philosophy of Science in the Science Curriculum	1027
9.5	RICHARD A. DUSCHL & RICHARD J. HAMILTON Conceptual Change in Science and in the Learning of Science	1047
9.6	NANCY W. BRICKHOUSE Feminism(s) and Science Education	1067
9.7	DOUGLAS ALLCHIN Values in Science and in Science Education	1083
9.8	VICENTE MELLADO Preservice Teachers' Classroom Practice and Their Conceptions of the Nature of Science	1093
9.9	PETER C. TAYLOR Constructivism: Value Added	1111

1229

1245

1263

	Section 10: Research Methods John P. Keeves		
10.1	JOHN P. KEEVES Methods and Processes in Research in Science Education	1127	
10.2	FREDERICK ERICKSON Qualitative Research Methods for Science Education	1155	
	JAY L. LEMKE	1133	
10.3	Analysing Verbal Data: Principles, Methods and Problems JOE L. KINCHELOE	1175	
10.4	Critical Research in Science Education	1191	
10.5	RICHARD T. WHITE Decisions and Problems in Research on Metacognition	1207	
10 6	K. C. CHEUNG & JOHN P. KEEVES Modelling Processes and Structure in Science Education	1215	
	into doming a roots soon and structure in solution Education	1417	

JOHN P. KEEVES & SIVAKUMAR ALAGUMALAI

10.7 Advances in Measurement in Science Education

Index of Names

Index of Subjects