CONTENTS

Chapter 1 INTRODUCTION	1
OVERVIEW	1
1. On the local character of the theoretical formulation and its components	3
2. Mathematical Sign Systems	4
2.1. Sign	4
2.2. Mathematical Sign Systems	6
3. Different answers to same questions?	7
4. The transition from arithmetic to algebra. Pre-algebra. Some observations	
about cognition	9
4.1. The role of historical analysis	9
4.2. Mathematics lessons at the beginning of secondary education	11
4.2.1. The reverse of multiplication syndrome	12
4.2.2. Different uses of the notion of equality. Polysemy of x	13
4.2.3. Difficulties in translations	15
4.3. Algebraic and natural language translations	17
5. Algebra as a language: Approaches from linguistic, semiotic, and historical	19
perspectives SUMMARY	23
Chapter 2 CURRICULUM DESIGN AND DEVELOPMENT FOR STUDENS, TEACHERS AND RESEARCHERS	27
OVERVIEW	27
1. Introduction	28
1.1. Partial and eclectic points of view	29
2. Local theoretical models	30
2.1. Four characteristics of LTMs	30
2.2. Semantics and pragmatics	32
2.3. The components of LTMs	34
2.4. Local versus general, the reason for the local in our theoretical models	34
2.5. The component of formal competence	35
3. A general framework for curriculum development for the study of an LTM	36
3.1. Concepts	37
3.2. The relation with reality. Teaching mathematization	37
3.3. Practical knowledge	38 39
3.4. The analytic and instrumental function for other areas of knowledge	39
4. Phenomenological analysis as a component of didactical analysis	39
Hans Freudenthal's approach to curriculum development	39
4.1. Phenomenological analysis4.2. Constitution of mental objects versus acquisition of concepts	42
4.2. Constitution of mental objects versus acquisition of concepts 4.3. Considerations for an LTM for studying the uses of natural numbers	44
4.3.1. The first arithmetic signs	44
4.3.2. The signs used in the Roman number system	45
4.3.3. Algebraic expressions	46

vi CONTENTS

4.3.4. Uses of numbers in different contexts	47
4.4. Relation between mental object and concept	49
4.5. From phenomena to mental objects and concepts through teaching	50
4.6. Concepts generated by proving	53
4.7. Problem solving, defining, and other processes that also generate concepts	55
SUMMARY	56
Chapter 3 EXPERIMENTAL DESIGN	59
OVERVIEW	59
1. Introduction	59
2. Experimental observation	60
2.1. The design and development of the experiment	60
2.2. Recursiveness in the use of LTMs and the ephemeral quality	
of certain theses	60
2.3. On the didactic cut	63
2.4. On controlled teaching	63
2.5. On diagnosis	64
2.6. On the clinical interview	64
2.7. On the preliminary analysis of the problems	65
3. On the role of historical analysis	66 66
3.1. Epistemological analysis	67
3.2. The reading of texts	69
3.3. The abbacus books 3.4. An abbacus problem	71
3.5. De Nemore and his work	72
3.6. De Numeris Datis	73
4. The phenomenological analysis of school algebra	75
4.1. Characteristics of algebra in al-Khwârizmî	75
4.2. Steps toward modern algebra	79
4.3. The phenomenological analysis of the language of algebra	81
4.3.1. The representation of unknown quantities and species of numbers	82
4.3.2. Aspects of the didactical phenomenology of the language of algebra	84
SUMMARY	86
Chapter 4	
CONCRETE MODELS AND ABSTRACTION PROCESSES	
TEACHING TO OPERATE ON THE UNKNOWN	89
OVERVIEW	89
1. Introduction	89
1.1. Observation in class	89
1.2. Experimental observation	90
1.3. The theoretical framework 1.4. Reading guide	91
2. The solution of equations and the transition from arithmetic to algebra	92 93
3. Concrete modeling at a transition point	93 95
3.1. The study "Operating on the Unknown"	95 95
3.2. The clinical interview	98

	ΓΕΝ	

vii

4. Processes of abstraction of operations, based on the use of a model to learn	
how to operate on the unknown	100
5. Two concrete models	100
5.1. The geometric model	101
5.2. The balance scales model 5.3. Results	102
	103
5.3.1. Momentary loss of earlier skills, accompanied by the presence of behavior anchored in arithmetic	102
5.3.2. Modification of the arithmetic notion of equation	103 104
6. Semantics versus algebraic syntax	104
6.1. Comparison of the use of two different models to operate on the unknown	109
7. Contrast between two cognitive tendencies in the learning and use of mathematics,	107
with respect to the application of the same model for operating on the unknown	115
SUMMARY	117
Chapter 5	
Chapter 5 TEACHING MODELS	121
OVERVIEW	121
1. Introduction	121
1.1. Problem-solving ability and competence in the use of the mathematical	
sign systems (MSSs) of algebra	123
1.2. The rest of the chapter	124
2. Mathematical texts and teaching models	124
2.1. A teaching model is a sequence of mathematical texts	124
2.2. Mathematical texts are produced by means of stratified mathematical	
sign systems and with heterogeneous matters of expression	125
2.3. The heterogeneity of the matter of expression is revealed in the presence	
in the texts of segments of natural language, algebraic language, geometric	
figures and other diagrams, etc	126
2.4. Inscribed in mathematical texts there are deictics that refer to elements of	127
segments of different natures	127
2.5. Through these deictics, indications of translations between elements that refer to each other are inscribed in the text, which are marks, borne by the	
text itself, of the semantic field that the reader has to use to produce sense	127
2.6. The objects with which mathematics deals are created in a movement of	12/
phenomena/means of organization by the mathematical sign systems that	
describe them	128
2.7. The fact that mathematical sign systems are the product of a process	120
of progressive abstraction, whether in the history of mathematics or in the	
personal history of an empirical subject, has the effect that the ones that are	
really used are made up of strata that come from different points in the	
process, interrelated by the correspondences that it has established	128
2.8. The reading/transformation of a text/textual space can therefore be	
performed using different strata of the mathematical sign system, making	
use of concepts, actions, or properties of concepts or actions that are	
described in one of those strata	128
2.9. In these modifications of language strata that lead to identifying concepts	
or actions, an important part is played by the autonomization of the	130
transformations of the expression with respect to the content	129

viii CONTENTS

2.10. The development of new competences in mathematics can be seen as the result of working with an MSS that one has already mastered to some extent2.11. A teaching model is a sequence of problem situations. This is the sense	131
of teaching through problem solving	132
3. Concrete modeling	133
3.1. Algebraic semantics versus syntax	134
3.2. Components of concrete modeling	134
3.3. Concrete modeling versus mechanization and practice	135
3.4. Syntactic models	136
3.5. Modeling and teaching algebra	137
SUMMARY	138
Chapter 6	
ALGEBRAIC SYNTAX AND SOLVING WORD PROBLEMS	
FIRST STEPS	141
OVERVIEW	141
1. Introduction	141
2. The transition to semantics (the case of Ma)	143
2.1. Map of the interview	145
2.1.1. Data of the interviewee	145
2.1.2. Items in the interview	146 150
2.2. Performance prior to the instruction phase2.3. Performance after the instruction phase	150
2.4. Progress toward semantics	155
3. Some pointers concerning teaching	159
SUMMARY	161
Chapter 7 COGNITIVE TENDENCIES AND ABSTRACTION PROCESSES	163
OVERVIEW	
OVERVIEW 1. Introduction	163
1. Introduction	163
1.1. Cognitive tendencies toward a competent use of more abstract MSSs 1.1.1. The presence of a process of abbreviation of concrete texts	164
in order to be able to produce new rules of syntax	1.64
1.1.2. The production of intermediate senses	164 164
1.1.3. The return to more concrete situations when an analysis situation	104
presents itself	164
1.1.4. The inability to set in motion operations that could be	104
performed a few moments before	164
1.1.5. Getting stuck in readings made in language levels that will not	104
allow the problem situation to be solved	165
1.1.6. The articulation of mistaken generalizations	165
1.1.7. The presence of calling mechanisms that cause the learner to get	105
stuck in setting in motion mistaken solving processes	165
1.1.8. The presence of inhibiting mechanisms	165
1.1.9. The effect of obstructions derived from semantics on syntax	,05
and viceversa	166

CONTENTS ix

1.1.10. The generation of syntactic errors due to the production of	
intermediate personal codes in order to produce senses for	
intermediate concrete actions	166
1.1.11. The need to produce senses for increasingly abstract networks of	
actions until they become operations	166
2. Solving equations and Thales's theorem	166
2.1. General description	167
2.2. Thales' Theorem: Meaning and sense in an MSS	167
2.3. The rest of the chapter	169
3. Solving equations. Analysis of a typical interview by episodes	169
3.1. First episode	170
3.2. Second episode	172
3.3. Third episode	173
3.4. Fourth episode	173
3.5. Fifth episode	174
4. Proportional variation, Thales' Theorem. An experimental study	175
4.1. Unit 7 in the teaching model	176
4.2. Description of the study	180
4.3. A few particular observations	181
4.3.1. First observation	182
4.3.2. Second observation	182
4.3.3. Third observation	183
4.3.4. Fourth observation	183
4.3.5. Fifth observation	184
4.3.6. Sixth observation	184
4.3.7. Seventh observation	185
4.4. The distinction between meaning and sense exemplified again	185
5. Cognitive tendencies revisited	186
5.1. The presence of a process of abbreviation of concrete texts	
in order to be able to produce new rules of syntax	186
5.2. The production of intermediate senses	186
5.3. The return to more concrete situations when an analysis situation present itself	107
5.4. The impossibility of settings in motion operations that	186
present itself	107
5.5. Getting stuck in readings made in languages levels that will not allow	187
the problem situation to be solved	187
5.6. The articulation of mistaken generalizations	187
5.7. The presence of calling mechanisms that cause the learner to get stuck	107
in setting in motion mistaken solving processes	187
5.8. The presence of inhibiting mechanisms	188
5.9. The effect of obstructions derived from semantics on syntax	100
and viceversa	188
5.10. The generation of syntactic error due to the production of	100
intermediate personal codes in order to produce senses for	
intermediate concrete actions	188
5.11. The need to produce senses for increasingly abstract networks of	2007
actions until they become operations	188
SUMMARY	188

x CONTENTS

Chapter 8 MATHEMATICAL SIGN SYSTEMS. MEANING AND SENSE	191
OVERVIEW	191
1. Introduction	191
1.1. Research and working with teachers	191
1.2. Proof and the formal model	193
1.2.1. What Thales may have been able to prove	193
1.2.2. Which of the two propositions came first, [C] or [T]?	196
1.2.3. Proof in mathematics	197
1.3. The formal competence model and the teaching model	197
2. Signification and communication	199
2.1. Sources of meaning of MSSs	199
2.2. Meaning and sense	201
2.3. The production of MSSs	201
2.4. Signification and communication	202
2.5. Mathematical texts	202
3. Meaning and sense	203
3.1. The sense of a succession of texts	203
3.2. Teaching models and stratified MSSs	204
4. Two meanings of the equals sign and the senses of the methods	
of comparison and substitution	205
4.1. The methods of comparison and substitution and the equals sign	205
4.2. An LTM for the methods of algebraic comparison and substitution	207
4.2.1. The formal competence model	207
4.2.2. Teaching model	208
4.2.3. Cognitive processes model	208
4.3. Items in the interview	208
4.4. The empirical study. Observations	209
4.4.1. Trial and error	209
4.4.2. The difficulties in producing sense for comparison and substitution	
and for the meaning of the equals sign	210
4.4.3. Different levels of abstraction: the case of names	211
4.4.4. The criss-cross method	212
4.4.5. Inhibition against the use of substitution	213
SUMMARY	213
	213
Chapter 9 SOLVING ARITHMETIC-ALGEBRAIC PROBLEMS	215
OVERVIEW	215
1. Introduction	216
2. The solution of problem situations in algebra. Cognitive aspects	217
2.1. Competent use and cognitive tendencies	218
2.2. Mastery of intermediate tactics and cognitive tendencies	219
2.3. The problem of transference	220
2.4. Competent use of the logical/semiotic outline	220
2.5. The pertinent use of certain intermediate strata	221
2.6. The logical/semiotic outline, the MSS strata used as representation	221
2.7. The level of representation and the use of memory	222
2.8. The use of primitive methods and the use of memory	222
· · · · · · · · · · · · · · · · · · ·	

CONTENTS xi

2.9. Personal codes	223
2.10. Problem solving and syntax	223
2.11. Mechanization and practice	223
3. Solving arithmetic-algebraic problems	224
3.1. The "Solving Arithmetic-Algebraic Problems" project	225
3.2. Some preliminary observations	226
3.2.1. A cognitive tendency: resistance to producing sense for an	226
algebraic representation when one is in a numeric context	226
3.2.2. Concerning the natural tendency to use numeric values to	
explore problems	226
3.2.3. The relationship between competence to make a logical analysis	
and mastery of intermediate tactics	227
3.2.4. One way of observing the complexity of a problem is through	
the difficulty that a user has in inventing a problem of the same	
family	228
3.2.5. For a user to be competent in a more abstract MSS, he must also	
be competent in other, more concrete MSSs	228
3.2.6. The sense of the CM is related both to the capability of going back	
to more concrete MSSs and also to the aptitude for recognizing	
the algebraic expressions used to solve the problem as	
expressions that involve unknowns	229
3.3. Four teaching models	229
3.4. The Cartesian Method	231
3.5. Spreadsheets used to solve word problems	239
4. The method of successive analytic inferences	240
4.1. An example of the use of the MSAI	240
4.2. Difficulties in the use of the MSAI 4.2.1. The tendency not to admit the possibility of making inferences	242
	242
about something that is unknown. 4.2.2. Lack of knowledge of concepts as an obstructer	242
4.2.3. Families of problems determine their level of representation	243 243
4.2.4. The use of trial and error to avoid the difficulty	243
of the inferences of the MSAI	243
4.2.5. The need for intensive use of memory as an obstructer	243
4.2.6. The singularity of the representation of each problem in the MSAI	274
as opposed to representation using canonic forms in the CM	244
4.3. Advances with the MSAI	244
4.3.1. Modification of the natural tendency to tackle arithmetic-algebraic	277
problems by means of arithmetic, and its relation to the	
representation of the unknown	244
4.3.2. On the processes of abstraction and generalization	245
4.3.3. With time, the MSAI requires representations similar to those	
of the AMSE and the SM	246
4.3.4. The use of numeric trial and error in the arithmetic MSS stratum	
can enable the user to correct a faulty analysis made with the MSAI	246
4.3.5. The succinctness of the use of the MSAI	246
5. Toward the CM via the MSAI, the AMSE and the SM	247
5.1. The AMSE and the SM as a bridge to unite syntactic and semantic	
development	247
5.2. The MSAI, the AMSE, and the SM serve as precursors for creating	
the meanings of algebraic relationships	248

xii CONTENTS

5.3. The AMSE and the SM encourage different algebraic interpretations	
of the word problem	248
5.4. Dimensional analysis of equations serves as an element of control	248
5.5. For some problems the MSAI is more efficient than the AMSE or the SM.	249
5.6. The relationship between representations in the CM and the efficient use	
of working memory	249
5.7. The competent use of the CM and its relation to the various uses of	
algebraic expressions	249
5.8. The logical outline, the analysis of the problem and other competences	21/
of students	250
5.9. The AMSE and the SM use special markers in their representations to	±30
release units of memory that allow the progressive setting in motion of	
the analysis	251
	231
5.10. The solution of some problems depends on whether the logical outline	251
establishes a suitable representation	231
5.11. Some abbreviations that use natural language are related to the production	252
of mistaken representation in the MSSs	252
5.12. In some contexts one finds a cognitive tendency to make transfers	
(mistaken or otherwise) from one problem to another as a result of	250
immediate recognition	252
5.13. The articulation of mistaken generalizations	253
SUMMARY	253
Chapter 10	
WIDENING PERSPECTIVES	257
WIDENING FERSI ECTIVES	231
OVERVIEW	257
Historical analysis of algebraic ideas	257
1.1. Current and future research	258
2. Cognitive tendencies and the interaction between semantics and algebraic	ى د د
syntax in the production of syntactic errors	260
2.1. Different tendencies	260
2.2. Syntactic errors	
2.3. New studies needed	261
3. Jordanus Nemorarius's De Numeris Datis as an MSS	262
The construction of a teaching model for the second-degree equation	246
and the introduction of certain algebraic identities	262
4. New uses of technology in the classroom and the communication model	266
5. Early algebra 5.1. Generalization	268
	268
5.2. Implementation of the teaching model	269
5.3. Grammatical change	269
5.4. Research needed	270
6. Results of recent research into problems of learning algebra used as the core	
for in-service courses in the teaching of mathematics	270
6.1. Some topics for discussion	270
6.2. Research needed	272
7. Observation in the classroom. A semiotic perspective	272
CODA	27

CONTENTS	xiii
Chapter 11 REFERENCES. A DEEP SEA OF LUMINESCENT IDEAS	277
AUTHOR INDEX	285
SUBJECT INDEX	287