Contents

Preface to the Second Edition	vii
Preface to the First Edition	ix

Part I Basic Concepts

1	Thermodynamical Principles and the Landau Theory			
	1.1	Introduction		
	1.2	Phase Equilibria in Isotropic Systems	6	
	1.3	Phase Diagrams and Metastable States		
	1.4	The van der Waals Equation of State	12	
	1.5	Second-Order Phase Transitions and the Landau Theory	17	
		1.5.1 The Ehrenfest Classification	17	
		1.5.2 The Landau Theory	19	
	1.6	Susceptibilities and the Weiss Field		
		1.6.1 Susceptibility of an Order Parameter	24	
		1.6.2 The Weiss Field in a Ferromagnetic Domain	25	
	1.7	Critical Anomalies, Beyond Classical Thermodynamics	27	
	1.8	Remarks on Critical Exponents	29	
2	Orc	ler Variables, Their Correlations and Statistics: the		
-		an-Field Theory	31	
	2.1			
	2.2		01	
		Mean-Field Approximation	33	
		2.2.1 Probabilities		
		2.2.2 The Concept of a Mean Field		
	2.3	Statistical Mechanics of an Order-Disorder Transition		
	2.4	The Ising Model for Spin-Spin Correlations		
	2.5	The Role of the Weiss Field in an Ordering Process		
		- the second of the second in the Ordering I roceas	11	

3	Col	lective Modes of Pseudospins in Displacive Crystals	
	and	the Born-Huang Theory	45
	3.1	Displacive Crystals	45
	3.2	The Landau Criterion for Classical Fluctuations	49
	3.3	Quantum-Mechanical Pseudospins and their Correlations	51
	3.4	The Born-Huang Theory and Structural Ordering in Crystals.	54
	3.5	Collective Pseudospin Modes in Displacive Systems	56
	3.6	Examples of Collective Pseudospin Modes	59
		3.6.1 Strontium Titanate and Related Perovskites	59
		3.6.2 Tris-Sacosine Calcium Chloride and Related Crystals	62
	3.7	The Variation Principle and the Weiss Singularity	65
4	Soft	Modes, Lattice Anharmonicity and Pseudospin	
	Cor	ndensates in the Critical Region	69
	4.1	The Critical Modulation	69
	4.2	The Lyddane-Sachs-Teller Relation	71
	4.3	Long-Range Interactions and the Cochran Theory	75
	4.4	The Quartic Anharmonic Potential in the Critical Region	77
		4.4.1 The Cowley Theory of Mode Softening	78
		4.4.2 Symmetry Change at a Continuous Phase Transition	80
	4.5	Observation of Soft-Mode Spectra	83
	4.6	The Central Peak	87
	4.7	Symmetry-Breaking Fluctuations in Binary Phase Transitions.	89
	4.8	Macroscopic Observation of a Binary Phase Transition;	
		$\boldsymbol{\lambda}$ -anomaly of the Specific Heat	95
5	Dyı	namics of Pseudospins Condensates and the	
	Lon	g-Range Order	101
	5.1	Imperfections in Practical Crystals	101
	5.2	The Pinning Potential	
	5.3	The Lifshitz Condition for Incommensurate Fluctuations	105
	5.4	A Pseudopotential for Condensate Locking and	
		Commensurate Modulation	
	5.5	Propagation of a Collective Pseudospin Mode	112
	5.6	A Hydrodynamic Model for Pseudospin Propagation	119
	5.7	The Korteweg-deVries Equation	
		5.7.1 General Derivation	
		5.7.2 Solutions of the Korteweg-deVries Equation	
	5.8	Soliton Potentials and the Long-Range Order	
	5.9	Mode Stabilization by the Eckart Potential	130

Part	Π	Experimental	Studies
------	---	--------------	---------

6		fuse X-ray Diffraction and Neutron Inelastic Scattering
		n Modulated Crystals141
	6.1	Modulated Crystals
	6.2	The Bragg Law of X-ray Diffraction143
	6.3	Diffuse Diffraction from Weakly Modulated Crystals
	6.4	The Laue Formula and Diffuse Diffraction from Perovskites 150
	6.5	Neutron Inelastic Scattering
7		ht Scattering and Dielectric Studies on Structural
		ase Transitions
	7.1	Raman Scattering Studies on Structural Transitions
	7.2	Rayleigh and Brillouin Scatterings
	7.3	Dielectric Relaxation
	7.4	Dielectric Spectra in the Ferroelectric Phase Transition of
		TSCC
8	The	e Spin-Hamiltonian and Magnetic Resonance
	Spe	ctroscopy
	8.1	Introduction
	8.2	Principles of Magnetic Resonance and Relaxation
	8.3	Magnetic Resonance Spectrometers
	8.4	The Crystalline Potential
	8.5	The Zeeman Energy and the g Tensor
	8.6	The Fine Structure 190
	8.7	Hyperfine Interactions and Forbidden Transitions
9	Ma	gnetic Resonance Sampling and Nuclear Spin
	Rela	axation Studies on Modulated Crystals
	9.1	Paramagnetic Probes in a Modulated Crystal 199
	9.2	The spin-Hamiltonian in Modulated Crystals
		9.2.1 The g Tensor Anomaly
		9.2.2 The Hyperfine Structure Anomaly
		9.2.3 The Fine-Structure Anomaly
	9.3	Structural Phase Transitions in TSCC and BCCD Crystals
		as Studied by Paramagnetic Resonance Spectra
		9.3.1 The Ferroelectric Phase Transition in TSCC Crystals 208
		9.3.2 Structural Phase Transitions in BCCD Crystals 217
	9.4	Nuclear Quadrupole Relaxation in Incommensurate Phases 226

10	Structural Phase Transitions in Miscellaneous Systems 231
	10.1 Cell-Doubling Transitions in Oxide Perovskites
	10.2 The Incommensurate Phase in β -Thorium Tetrabromide 235
	10.3 Phase Transitions in Deuterated Biphenyl Crystals
	10.4 Successive Phase Transitions in A ₂ BX ₄ Family Crystals 242
	10.5 Incommensurate Phases in RbH ₃ (SeO ₃) ₂ and Related Crystals 246
	10.6 Phase Transitions in (NH ₄) ₂ SO ₄ and NH ₄ AlF ₄ 249
	10.7 Proton Ordering in Hydrogen-Bonded Crystals
Epi	logue
Ap	pendix The Adiabatic Approximation259
Ind	ex