CONTENTS

	Pre_j	face	xi
	Dependence Among Chapters		xiv
	Guide for the Reader		xv
	List of Figures		xviii
	Ack	nowledgments	xix
	Star	ndard Notation	xxi
I.	THEORY OF CALCULUS IN ONE REAL VARIABLE		
	1.	Review of Real Numbers, Sequences, Continuity	2
	2.	Interchange of Limits	13
	3.	Uniform Convergence	15
	4.	Riemann Integral	26
	5.	Complex-Valued Functions	41
	6.	Taylor's Theorem with Integral Remainder	43
	7.	Power Series and Special Functions	44
	8.	Summability	53
	9.	Weierstrass Approximation Theorem	58
	10.	Fourier Series	61
	11.	Problems	78
II.	METRIC SPACES		82
	1.	Definition and Examples	83
	2.	Open Sets and Closed Sets	91
	3.	Continuous Functions	95
	4.	Sequences and Convergence	97
	5.	Subspaces and Products	102
	6.	Properties of Metric Spaces	105
	7.	Compactness and Completeness	108
	8.	Connectedness	115
	9.	Baire Category Theorem	117
	10.	Properties of $C(S)$ for Compact Metric S	121
	11.	Completion	127
	12.	Problems	130

viii Contents

III.	TH	EORY OF CALCULUS IN SEVERAL REAL VARIABLES	135	
	1.	Operator Norm	135	
	2.	Nonlinear Functions and Differentiation	139	
	3.	Vector-Valued Partial Derivatives and Riemann Integrals	146	
	4.	Exponential of a Matrix	148	
	5.	Partitions of Unity	151	
	6.	Inverse and Implicit Function Theorems	152	
	7.	Definition and Properties of Riemann Integral	161	
	8.	Riemann Integrable Functions	166	
	9.	Fubini's Theorem for the Riemann Integral	169	
	10.	Change of Variables for the Riemann Integral	171	
	11.	Problems	179	
IV.	THEORY OF ORDINARY DIFFERENTIAL EQUATIONS			
	AN]	D SYSTEMS	183	
	1.	Qualitative Features and Examples	183	
	2.	Existence and Uniqueness	187	
	3.	Dependence on Initial Conditions and Parameters	194	
	4.	Integral Curves	199	
	5.	Linear Equations and Systems, Wronskian	201	
	6.	Homogeneous Equations with Constant Coefficients	208	
	7.	Homogeneous Systems with Constant Coefficients	211	
	8.	Series Solutions in the Second-Order Linear Case	218	
	9.	Problems	226	
V.	LEBESGUE MEASURE AND ABSTRACT			
	ME	ASURE THEORY	231	
	1.	Measures and Examples	231	
	2.	Measurable Functions	238	
	3.	Lebesgue Integral	241	
	4.	Properties of the Integral	245	
	5.	Proof of the Extension Theorem	253	
	6.	Completion of a Measure Space	262	
	7.	Fubini's Theorem for the Lebesgue Integral	265	
	8.	Integration of Complex-Valued and Vector-Valued Functions	274	
	9.	L^1, L^2, L^{∞} , and Normed Linear Spaces	279	
	10.	Problems	289	
VI.		ASURE THEORY FOR EUCLIDEAN SPACE	296	
	1.	Lebesgue Measure and Other Borel Measures	297	
	2.	Convolution	306	
	3.	Borel Measures on Open Sets	314	
	4.	Comparison of Riemann and Lebesgue Integrals	318	

Contents ix

VI.	ME	ASURE THEORY FOR EUCLIDEAN SPACE (Continued)	
	5.	Change of Variables for the Lebesgue Integral	320
	6.	Hardy-Littlewood Maximal Theorem	327
	7.	Fourier Series and the Riesz-Fischer Theorem	334
	8.	Stieltjes Measures on the Line	339
	9.	Fourier Series and the Dirichlet–Jordan Theorem	346
	10.	Distribution Functions	350
	11.	Problems	352
VII.		FERENTIATION OF LEBESGUE INTEGRALS	
	ON	THE LINE	357
	1.	Differentiation of Monotone Functions	357
	2.	Absolute Continuity, Singular Measures, and	
		Lebesgue Decomposition	364
	3.	Problems	370
VIII.	. FOU	URIER TRANSFORM IN EUCLIDEAN SPACE	373
	1.	Elementary Properties	373
	2.	Fourier Transform on L^1 , Inversion Formula	377
	3.	Fourier Transform on L^2 , Plancherel Formula	381
	4.	Schwartz Space	384
	5.	Poisson Summation Formula	389
	6.	Poisson Integral Formula	392
	7.	Hilbert Transform	397
	8.	Problems	404
IX.	L^p SPACES		409
	1.	Inequalities and Completeness	409
	2.	Convolution Involving L^p	417
	3.	Jordan and Hahn Decompositions	418
	4.	Radon–Nikodym Theorem	420
	5.	Continuous Linear Functionals on L^p	424
	6.	Marcinkiewicz Interpolation Theorem	427
	7.	Problems	436
Χ.	TOPOLOGICAL SPACES		441
	1.	Open Sets and Constructions of Topologies	441
	2.	Properties of Topological Spaces	447
	3.	Compactness and Local Compactness	451
	4.	Product Spaces and the Tychonoff Product Theorem	458
	5.	Sequences and Nets	463
	6	Quotient Spaces	171

Contents X

Χ.	TOI	POLOGICAL SPACES (Continued)	
	7.	Urysohn's Lemma	474
	8.	Metrization in the Separable Case	476
	9.	Ascoli-Arzelà and Stone-Weierstrass Theorems	477
	10.	Problems	480
XI.	INT	EGRATION ON LOCALLY COMPACT SPACES	485
	1.	Setting	485
	2.	Riesz Representation Theorem	490
	3.	Regular Borel Measures	504
	4.	Dual to Space of Finite Signed Measures	509
	5.	Problems	517
XII.	HIL	BERT AND BANACH SPACES	520
	1.	Definitions and Examples	520
	2.	Geometry of Hilbert Space	526
	3.	Bounded Linear Operators on Hilbert Spaces	535
	4.	Hahn-Banach Theorem	537
	5.	Uniform Boundedness Theorem	543
	6.	Interior Mapping Principle	545
	7.	Problems	549
APP	END	IX	553
	A1.	Sets and Functions	553
	A2.	Mean Value Theorem and Some Consequences	559
	A3.	Inverse Function Theorem in One Variable	561
		Complex Numbers	563
	A5.	Classical Schwarz Inequality	563
	A6.	Equivalence Relations	564
	A7.	Linear Transformations, Matrices, and Determinants	565
	A8.	Factorization and Roots of Polynomials	568
	A9.	Partial Orderings and Zorn's Lemma	573
	A10	. Cardinality	577
		s for Solutions of Problems	581
		cted References	637
	Inde	x of Notation	639
	Inde	x	6/13

643