Contents

Part I Literature Review

1	Sur	vey for Portfolio Selection Under Fuzzy Uncertain	
	Cire	cumstances	3
	1.1	Introduction	3
	1.2	Portfolio Selection Based on the Fuzzy Decision Theory	5
	1.3	Portfolio Selection Based on Possibilistic Programming	$\overline{7}$
		1.3.1 The Center-Spread Model	8
		1.3.2 Models Using the Necessity Measure	10
	1.4	Portfolio Selection Based on Interval Programming	13

Part II Portfolio Selection Models Based on Fuzzy Decision Making

2	Fuz	zy Decision Making and Maximization Decision Making	19
3	Por	tfolio Selection Model with Fuzzy Liquidity Constraints	lel with Fuzzy Liquidity Constraints 21
	3.1	Introduction	21
	3.2	Minimax Semi-absolute Deviation Risk Function	22
	3.3	Fuzzy Liquidity of Securities	23
	3.4	Model Formulation	25
	3.5	Numerical Example	37
	3.6	Conclusion	39
4	Ramaswamy's Model		45
	4.1	Introduction	45
	4.2	Model Formulation	46
	4.3	Conclusion	47

5	Leó	n-Liern-Vercher's Model	49
	5.1	Formulations of Portfolio Selection Problem	49
	5.2	Analysis of Infeasibility of Portfolio Selection Problem	51
	5.3	Fuzzy Portfolio Selection Model	52
	5.4	Numerical Example	56
	5.5	Conclusion	61
6	Fuz	zy Semi-absolute Deviation Portfolio Rebalancing	
	Mo	del	63
	6.1	Introduction	63
	6.2	Linear Programming Model for Portfolio Rebalancing with	
		Transaction Costs	64
	6.3	Portfolio Rebalancing Model based on Fuzzy Decision	67
	6.4	Numerical Example	71
	6.5	Conclusion	77
7	Fuz	zy Mixed Projects and Securities Portfolio Selection	
	Mo	del	79
	7.1	Introduction	79
	7.2	Bi-objective Programming Model for Mixed Asset Portfolio	
		Selection	80
	7.3	Fuzzy Mixed Asset Portfolio Selection Model	85
	7.4	Numerical Example	87
	7.5	Conclusion	88

Part III Portfolio Selection Models with Interval Coefficients

8	Lin	ear Programming Model with Interval Coefficients	93
	8.1	Introduction	93
	8.2	Notations and Definitions	94
	8.3	The Expected Return Intervals of Securities	95
	8.4	The Interval Programming Models for Portfolio Selection	96
	8.5	Numerical Example 1	103
	8.6	Conclusion	105
9	Qua	adratic Programming Model with Interval Coefficients1	107
-	9.1	Introduction	107
	9.2	Crisp Model and Algorithm 1	107
	9.3	The Model with Interval Coefficients and Its Extension 1	09
	9.4	Numerical Example 1	11
	9.5	Conclusion	14

Part IV Portfolio Selection Models with Possibility Distribution

10	Tanaka and Guo's Model with Exponential Possibility	
	Distributions	117
	10.1 Introduction	117
	10.2 Possibility Distributions in Portfolio Selection Problems	118
	10.3 Model Formulation	125
	10.4 Numerical Example	126
	10.5 Conclusion	128
11	Carlsson-Fullér-Majlender's Trapezoidal Possibility Model.	131
	11.1 Introduction	131
	11.2 Model Formulation	132
	11.3 Algorithm	138
	11.4 Numerical Example	139
	11.5 Conclusion	140
12	Center Spread Model in Fractional Financial Market	143
	12.1 Estimation of Possibility Distribution by Using Semi-definite	
	Programming	143
	12.2 Model Formulation	144
	12.3 Numerical Example	148
	12.4 Conclusion	151

Part V Fuzzy Passive Portfolio Selection Models

13	Fuzzy Index Tracking Portfolio Selection Model	155
	13.1 Introduction	155
	13.2 Bi-objective Programming Model for Index Tracking Portfolio	
	Selection	156
	13.3 Fuzzy Index Tracking Portfolio Selection Model	158
	13.4 Numerical Example	160
	13.5 Conclusion	160
Rei	erences	163