Contents

\mathbf{Pre}	xvii			
For	xix			
Glo	xxiii			
Ι	\mathbf{F}	irst Co	oncepts	1
	1	Two	Definitions of Lattices	1
		1.1	Orders	1
		1.2	Equivalence relations and preorderings	2
		1.3	Basic order concepts	4
		1.4	Ordering and covers	5
		1.5	Order diagrams	6
		1.6	Order constructions	7
		1.7	Two more numeric invariants	8
		1.8	Lattices as orders	9
		1.9	Algebras	11
		1.10	Lattices as algebras	12
		Exerci		15
	2	How	v to Describe Lattices	21
		2.1	Lattice diagrams	21
		2.2	Join- and meet-tables	21
		2.3	Combinations	22
		Exerci	ises	24
	3	Som	ne Basic Concepts	28
		3.1	The concept of isomorphism	28
		3.2	Homomorphisms	30
		3.3	Sublattices and extensions	31
		3.4	Ideals	31
		3.5	Intervals	35

	3.6	Congruences	36	
	3.7	Congruences and homomorphisms	40	
	3.8	Congruences and extensions	41	
	3.9	Congruences and quotients	42	
	3.10	♦ Tolerances	43	
	3.11	Direct products	45	
	3.12	Closure systems	47	
	3.13	Galois connections	49	
	3.14	Complete lattices	50	
	3.15	Algebraic lattices	52	
	3.16	\diamond Continuous lattices by Jimmie D. Lawson	54	
	3.17	\Diamond Algebraic lattices in universal algebra	57	
	Exerc	ises	59	
4	Ter	ms, Identities, and Inequalities	66	
	4.1	Terms and polynomials	66	
	4.2	Identities and inequalities	68	
	4.3	Distributivity and modularity	71	
	Exerc	ises	73	
5	Fre	e Lattices	75	
	5.1	The formal definition	75	
	5.2	Existence	77	
	5.3	-	82	
	5.4	Partial lattices	83	
	5.5	Free lattices over partial lattices	89	
	5.6	\diamond Finitely presented lattices	91	
	Exerc		92	
6	Spe	cial Elements	97	
	6.1	Complements	97	
	6.2	Pseudocomplements	99	
	6.3	Other types of special elements	101	
	6.4	\diamond Axiomatic games	102	
	Exerc	ises	104	
D		utive Lattices	109	
1	\mathbf{Ch}	aracterization and Representation Theorems	109	
	1.1	Characterization theorems	109	
	1.2	Structure theorems, finite case	112	
	1.3	\Diamond Structure theorems, finite case, categorical variant	115	
	1.4	Structure theorems, infinite case	116	
	1.5	Some applications	118	
	1.6	Automorphism groups	120	
	1.7	\Diamond Distributive lattices and general algebra	122	
	Exercises			

Π

				126
	2	Te	rms and Freeness	126
		2.1	Terms for distributive lattices	126
		2.2	Boolean terms	128
		2.3	Free constructs	130
		2.4	Boolean homomorphisms	131
		2.5	\Diamond Polynomial completeness of lattices by Kalle Kaarli	133
		Exer	cises	136
	3	Co	ongruence Relations	138
		3.1	Principal congruences	138
		3.2	Prime ideals	141
		3.3	Boolean lattices	142
		3.4	Congruence lattices	145
		Exer	cises	146
	4	Bo	oolean Algebras R-generated by Distributive Lattices	149
		4.1	Embedding results	149
		4.2	The complete case	154
		4.3	Boolean lattices generated by chains	156
		Exer	cises	164
	5	To	pological Representation	166
		5.1	Distributive join-semilattices	167
		5.2	Stone spaces	168
		5.3	The characterization of Stone spaces	170
		5.4	Applications	175
		5.5	Free distributive products	177
		5.6	\Diamond Priestley spaces by <i>Hilary A. Priestley</i>	180
		5.7	\diamond Frames by <i>Aleš Pultr</i>	184
		Exer	cises	185
	6	\mathbf{Ps}	eudocomplementation	191
		6.1	Definitions and examples	191
		6.2	Stone algebras	193
		6.3	Triple construction	194
		6.4	A characterization theorem for Stone algebras	196
		6.5	Two representation theorems for Stone algebras	197
		6.6	\diamond Generalizing Stone algebras	202
		6.7	\diamond Background	202
		Exer	cises	202
III	\mathbf{C}	ongri	uences	207
	1	Co	ongruence Spreading	207
		1.1	Congruence-perspectivity	207
		1.2	Principal congruences	209
		1.3	The join formula	212
		1.4	Finite lattices	213

and a street

eensions 217 218 219 220 utral Elements 223 223 223 224 226 228 undard, and neutral elements 230 232 24 228 228 228 232 232 24 228 232 232 232 232 232 233 235 235 235 235
218 219 220 utral Elements 223 223 223 223 223 223 224 226 228 undard, and neutral elements 230 232 utral Ideals 234 pes 234 as 235 es 238
utral Elements 223 223 223 223 224 224 226 228 228 undard, and neutral elements 230 232 234 pes 234 s 235 es 238
utral Elements 223 223 223 223 224 224 226 228 228 undard, and neutral elements 230 232 234 pes 234 s 235 es 238
223 223 224 226 228 andard, and neutral elements 230 232 utral Ideals 234 pes 234 235 235 235
223 223 224 226 228 andard, and neutral elements 230 232 232 234 pes 234 235 235 238
224 226 228 andard, and neutral elements 230 232 utral Ideals 234 pes 234 235 235 235 238
226228230232utral Ideals234pes235es238
228andard, and neutral elements230232utral Idealspes234as235es238
undard, and neutral elements230232utral Idealspes234s235es238
232 utral Ideals 234 pes 234 a 235 es 238
232 utral Ideals 234 pes 234 a 235 es 238
pes 234 a 235 es 238
pes 234 a 235 es 238
235 es 238
241
244
244
le factors 246
es 248
sitions of complete lattices
251
252
255
255
255
ervals 259
260
262
263
265
266
267
269
269
nents 270
ectors 272
to the ideal lattice 273
275
en Congruence Lattices 276
276

	4.2	Construction and proof	279	
	4.3	Sectional complementation	280	
	4.4	\Diamond Finite lattices by J. B. Nation	282	
	4.5	\Diamond Finite lattices in special classes	285	
	4.6	Two finite lattices	286	
	4.7	\diamondsuit More than two finite lattices	287	
	4.8	\Diamond Independence theorem for finite lattices	288	
	4.9	\diamond General lattices	289	
	4.10	Oint Complete lattices	291	
	Exerc	ises	292	
5	Boo	blean Triples	294	
	5.1	The general construction	295	
	5.2	Congruence-preserving extension	297	
	5.3	The distributive case	299	
	5.4	♦ Tensor products	300	
	5.5	\diamond Congruence-permutable, congruence-preserving		
		extensions by Friedrich Wehrung	301	
	Exerc		303	
•			0.07	
		r and Semimodular Lattices	307	
1		dular Lattices	307	
	1.1	Equivalent forms	307	
	1.2	The Isomorphism Theorem for Modular Lattices	308	
	1.3	Two applications	309	
	1.4	Congruence spreading	311	
	1.5	Congruences in the finite case	316	
	1.6	Von Neumann independence	316	
	1.7	Sublattice theorems	319	
	1.8	♦ Pseudocomplemented modular lattices	001	
	1.0	by Tibor Katriňák	321	
	1.9	\diamond Identities and quasi-identities in submodule lattices		
	Ð	by Gábor Czédli	323	
•	Exerc		325	
2		nimodular Lattices	329	
	2.1	The basic definition	329	
	2.2	Equivalent formulations	331	
	2.3	The Jordan-Hölder Theorem	333	
	2.4	Independence of atoms	334	
	2.5	M-symmetry	335	
	2.6	\diamond Consistency by <i>Manfred Stern</i>	338 340	
_	Exercises			
3	Geometric Lattices			
	3.1	Definition and basic properties	342	
	3.2	Structure theorems	344	

 \mathbf{V}

		3.3	Geometries	349
		3.4	Graphs	352
		3.5	Whitney numbers	353
		Exerci	-	355
	4	Part	ition Lattices	359
		4.1	Basic properties	359
		4.2	Type 3 representations	362
		4.3	Type 2 representations	365
		4.4	Type 1 representations	367
		4.5	\diamond Type 2 and 3 congruence lattices in algebras	369
		4.6	\Diamond Sublattices of finite partition lattices	370
		4.7	♦ Generating partition lattices	371
		Exerci	ses	371
	5	Con	plemented Modular Lattices	373
		5.1	Congruences	373
		5.2	Modular geometric lattices	373
		5.3	Projective spaces	375
		5.4	The lattice $\operatorname{PG}(D, \mathfrak{m})$	378
		5.5	Desargues' Theorem	379
		5.6	Arguesian lattices	383
		5.7	The Coordinatization Theorem	384
		5.8	Frink's Embedding Theorem	387
		5.9	A weaker version of the arguesian identity	390
		5.10	Projective planes	392
		5.11	O Coordinatizing sectionally complemented modular	
			lattices by Friedrich Wehrung	394
		5.12	\Diamond The dimension monoid of a lattice	
			by Friedrich Wehrung	397
		5.13	\Diamond Dilworth's Covering Theorem by Joseph P. S. Kung	401
		Exerci	ses	403
VI	V	arietie	s of Lattices	409
	1	Cha	racterizations of Varieties	409
		1.1	Basic definitions and results	409
		1.2	Fully invariant congruences	411
		1.3	Formulas for Var(K)	412
		1.4	Jónsson's Lemma	415
		Exercises		
	2		e Lattice of Varieties of Lattices	423
		2.1	Basic properties	423
		2.2	\diamond Varieties of finite height	425
		2.3	Join-irreducible varieties	426
		2.4	2^{\aleph_0} lattice varieties	428
		2.5	\diamond The covers of the pentagon	429

		2.6	\Diamond Products of varieties	430
		2.7	\Diamond Lattices of equational theories and quasi-equational	
			theories by Kira Adaricheva	431
		2.8	\Diamond Modified Priestley dualities as natural dualities	
			by Brian A. Davey and Miroslav Haviar	434
		Exerci	ses	437
	3	Find	ling Equational Bases	438
		3.1	UDE-s and identities	438
		3.2	Bounded sequences of intervals	443
		3.3	The modular varieties covering M_3	445
		Exerci	ses	450
	4	The	Amalgamation Property	454
		4.1	Basic definitions and elementary results	454
		4.2	Lattice varieties with the Amalgamation Property	458
		4.3	The class Amal(K)	461
		Exerci	ses	464
VII	\mathbf{F}	ree Pro	oducts	467
	1	Free	e Products of Lattices	467
		1.1	Introduction	467
		1.2	The basic definitions	470
		1.3	Covers	471
		1.4	The algorithm	472
		1.5	Computing the algorithm	472
		1.6	Representing the free product	474
		1.7	The Structure Theorem for Free Products	476
		1.8	Sublattices of a free product satisfying (W)	480
		1.9	Minimal representations	481
		1.10	Sublattices of a free product satisfying (SD_{\vee})	484
		1.11	The Common Refinement Property	485
		1.12	\diamond Bounded and amalgamated free products	487
		1.13	♦ Distributive free products	488
		Exercia	ses	488
	2	The	Structure of Free Lattices	493
		2.1	The structure theorem	493
		2.2	\diamond The word problem for modular lattices	494
		2.3	Applications	494
		2.4	Sublattices	498
		2.5	♦ More covers	501
		2.6	\Diamond Finite sublattices and transferable lattices	502
		2.7	\diamond Semidistributive lattices by Kira Adaricheva	503
		Exercia	ses	506
	3	Red	uced Free Products	508
		3.1	Basic definitions	508

1

		3.2	The structure theorem	508
		3.3	Getting ready for applications	511
		3.4	Embedding into uniquely complemented lattices	514
		3.5	♦ Dean's Lemma	517
		3.6	Some applications of Dean's Lemma	518
		Exerc	zises	521
	4	Ho	pfian Lattices	526
		4.1	Basic definitions	526
		4.2	Free product of hopfian lattices	528
		Exerc	zises	531
Afterword			533	
Bibliography				539
Index				589