Contents

Preface ix			
1	Intr	oduction	1
Pa	rt I C	CONVEX ANALYSIS ON PHASE SPACE	
2	Leg	endre-Fenchel Duality on Phase Space	25
	2.1	Basic notions of convex analysis	25
	2.2	Subdifferentiability of convex functions	26
	2.3	Legendre duality for convex functions	28
	2.4	Legendre transforms of integral functionals	31
	2.5	Legendre transforms on phase space	32
	2.6	Legendre transforms on various path spaces	38
	2.7	Primal and dual problems in convex optimization	45
3	Self	-dual Lagrangians on Phase Space	49
	3.1	Invariance under Legendre transforms up to an automorphism	49
	3.2	The class of self-dual Lagrangians	51
	3.3	Self-dual Lagrangians on path spaces	55
	3.4	Uniform convexity of self-dual Lagrangians	57
	3.5	Regularization of self-dual Lagrangians	59
	3.6	Evolution triples and self-dual Lagrangians	62
4	Ske	w-Adjoint Operators and Self-dual Lagrangians	67
-	4.1	Unbounded skew-symmetric operators and self-dual Lagrangians	67
	4.2	Green-Stokes formulas and self-dual boundary Lagrangians	73
	4.3	Unitary groups associated to skew-adjoint operators and self-duality	78
5	Self	-dual Vector Fields and Their Calculus	83
	5.1	Vector fields derived from self-dual Lagrangians	84
	5.2	Examples of <i>B</i> -self-dual vector fields	86

5.3	Operations on self-dual vector fields	88
5.4	Self-dual vector fields and maximal monotone operators	91

Part II COMPLETELY SELF-DUAL SYSTEMS AND THEIR LAGRANGIANS

6	Varia	tional Principles for Completely Self-dual Functionals		
	6.1	The basic variational principle for completely self-dual		
		functionals		
	6.2	Complete self-duality in non-selfadjoint Dirichlet problems 103		
	6.3	Complete self-duality and non-potential PDEs in divergence form 107		
	6.4	Completely self-dual functionals for certain differential systems 110		
	6.5	Complete self-duality and semilinear transport equations		
7	Semigroups of Contractions Associated to Self-dual Lagrangians 119			
	7.1	Initial-value problems for time-dependent Lagrangians		
	7.2	Initial-value parabolic equations with a diffusive term		
	7.3	Semigroups of contractions associated to self-dual Lagrangians 129		
	7.4	Variational resolution for gradient flows of semiconvex functions135		
	7.5	Parabolic equations with homogeneous state-boundary conditions 137		
	7.6	Variational resolution for coupled flows and wave-type equations $\dots 140$		
	7.7	Variational resolution for parabolic-elliptic variational		
		inequalities 143		
8	Iteration of Self-dual Lagrangians and Multiparameter Evolutions 147			
	8.1	Self-duality and nonhomogeneous boundary value problems 148		
	8.2	Applications to PDEs involving the transport operator		
	8.3	Initial-value problems driven by a maximal monotone operator 155		
	8.4	Lagrangian intersections of convex-concave Hamiltonian systems 161		
	8.5	Parabolic equations with evolving state-boundary conditions 162		
	8.6	Multiparameter evolutions 166		
9	Dire	ct Sum of Completely Self-dual Functionals		
	9.1	Self-dual systems of equations		
	9.2	Lifting self-dual Lagrangians to $A_{H}^{2}[0,T]$		
	9.3	Lagrangian intersections via self-duality		
10	Sem	ilinear Evolution Equations with Self-dual Boundary		
	Con	ditions		
	10.1	Self-dual variational principles for parabolic equations		
	10.2	Parabolic semilinear equations without a diffusive term		
	10.3	Parabolic semilinear equation with a diffusive term		
	10.4	More on skew-adjoint operators in evolution equations		

Part III SELF-DUAL SYSTEMS AND THEIR ANTISYMMETRIC HAMILTONIANS

11	The Class of Antisymmetric Hamiltonians
	11.1 The Hamiltonian and co-Hamiltonians of self-dual Lagrangians 206
	11.2 Regular maps and antisymmetric Hamiltonians
	11.3 Self-dual functionals
12	Variational Principles for Self-dual Functionals and First
	Applications
	12.1 Ky Fan's min-max principle
	12.2 Variational resolution for general nonlinear equations
	12.3 Variational resolution for the stationary Navier-Stokes equations 227
	12.4 A variational resolution for certain nonlinear systems
	12.5 A nonlinear evolution involving a pseudoregular operator
13	The Role of the Co-Hamiltonian in Self-dual Variational Problems 241
	13.1 A self-dual variational principle involving the co-Hamiltonian
	13.2 The Cauchy problem for Hamiltonian flows
	13.3 The Cauchy problem for certain nonconvex gradient flows 247
14	Direct Sum of Self-dual Functionals and Hamiltonian Systems 253
••	14.1 Self-dual systems of equations
	14.2 Periodic orbits of Hamiltonian systems
	14.3 Lagrangian intersections
	14.4 Semiconvex Hamiltonian systems
15	Superposition of Interacting Self-dual Functionals
	15.1 The superposition in terms of the Hamiltonians
	15.2 The superposition in terms of the co-Hamiltonians
	15.3 The superposition of a Hamiltonian and a co-Hamilonian
Part	t IV PERTURBATIONS OF SELF-DUAL SYSTEMS
16	Hamiltonian Systems of Dartial Differential Equations 297
10	16.1. Degularity and compactness via self-duality 788
	16.2 Hamiltonian systems of PDEs with self-dual boundary conditions 280
	16.3 Nonpurely diffusive Hamiltonian systems of PDEs
17	The Self-dual Palais-Smale Condition for Noncoercive Functionals 305
	17.1 A self-dual nonlinear variational principle without coercivity 306
	17.2 Superposition of a regular map with an unbounded linear
	operator
	17.3 Superposition of a nonlinear map with a skew-adjoint operator
	modulo boundary terms

18	Navier-Stokes and other Self-dual Nonlinear Evolutions	319
	18.1 Elliptic perturbations of self-dual functionals	319
	18.2 A self-dual variational principle for nonlinear evolutions	323
	18.3 Navier-Stokes evolutions	331
	18.4 Schrödinger evolutions	340
	18.5 Noncoercive nonlinear evolutions	342
Ref	erences	345
Ind	ex	353