Contents

Pr	eface	· · · · · · · · · · · · · · · · · · ·	ix
1	Obser	vability and Controllability for Finite-dimensional Systems	
	1.1	Norms and inner products	1
	1.2	Operators on finite-dimensional spaces	5
	1.3	Matrix exponentials	7
	1.4	Observability and controllability for finite-dimensional	
		linear systems	1
	1.5	The Hautus test and Gramians	15
2	Opera	ator Semigroups	
	2.1	Strongly continuous semigroups and their generators 2	20
	2.2	The spectrum and the resolvents of an operator	24
	2.3	The resolvents of a semigroup generator and	
		the space $\mathcal{D}(A^{\infty})$	28
	2.4	Invariant subspaces for semigroups	33
	2.5	Riesz bases	36
	2.6	Diagonalizable operators and semigroups	10
	2.7	Strongly continuous groups	17
	2.8	The adjoint semigroup	53
	2.9	The embeddings $V \subset H \subset V'$	56
	2.10	The spaces X_1 and X_{-1}	59
	2.11	Bounded perturbations of a generator	35
3	Semig	roups of Contractions	
	3.1	Dissipative and m-dissipative operators	39
	3.2	Self-adjoint operators	73
	3.3	Positive operators	78
	3.4	The spaces $H_{\frac{1}{2}}$ and $H_{-\frac{1}{2}}$	31
	3.5	Sturm-Liouville operators	38
	3.6	The Dirichlet Laplacian	} 2
	3.7	Skew-adjoint operators) 8

	3.8	The theorems of Lumer–Phillips and Stone 10)2		
	3.9	The wave equation with boundary damping 10)6		
4	Control and Observation Operators				
	4.1	Solutions of non-homogeneous equations	12		
	4.2	Admissible control operators	16		
	4.3	Admissible observation operators	21		
	4.4	The duality between the admissibility concepts	26		
	4.5	Two representation theorems	28		
	4.6	Infinite-time admissibility	34		
	4.7	Remarks and bibliographical notes on Chapter 4	36		
5	Testi	ng Admissibility			
	5.1	Gramians and Lyapunov inequalities	39		
	5.2	Admissible control operators for left-invertible semigroups 14	14		
	5.3	Admissibility for diagonal semigroups	17		
	5.4	Some unbounded perturbations of generators	57		
	5.5	Admissible control operators for perturbed semigroups 16	34		
	5.6	Remarks and bibliographical notes on Chapter 5 16	38		
6	Obset	rvability			
-	6.1	Some observability concepts	73		
	6.2	Some examples based on the string equation	79		
	6.3	Robustness of exact observability with respect to admissible			
		perturbations of the generator	34		
	6.4	Simultaneous exact observability 19) 0		
	6.5	A Hautus-type necessary condition for exact observability 19	} 4		
	6.6	Hautus-type tests for exact observability with a skew-adjoint			
		generator) 7		
	6.7	From $\ddot{w} = -A_0 w$ to $\dot{z} = iA_0 z$ 20)0		
	6.8	From first- to second-order equations)5		
	6.9	Spectral conditions for exact observability with a			
		skew-adjoint generator	ί1		
	6.10	The clamped Euler–Bernoulli beam with torque observation			
		at an endpoint	17		
	6.11	Remarks and bibliographical notes on Chapter 6	20		
7	Obser	rvation for the Wave Equation			
	7.1	An admissibility result for boundary observation 22	26		
	7.2	Boundary exact observability 23	31		
	7.3	A perturbed wave equation	34		
	7.4	The wave equation with distributed observation	1 0		
	7.5	Some consequences for the Schrödinger and plate equations 24	17		

	7.6	The wave equation with boundary damping and boundary	951	
	7.7	Remarks and hibliographical notes on Chapter 7	251	
~	 		201	
8	Non-h	armonic Fourier Series and Exact Observability	001	
	8.1 0 0	A theorem of ingnam	201	
	0.2	with boundary observation	266	
	83	Domains associated with a sequence	200	
	8.4	The results of Kahane and Beurling	276	
	8.5	The Schrödinger and plate equations in a rectangular domain	2.0	
	0.0	with distributed observation	280	
	8.6	Remarks and bibliographical notes on Chapter 8	284	
0	Obsor	vability for Parabolic Fountions		
3	0 1	Preliminary results	287	
	9.1	From $\ddot{w} = -A_0 w$ to $\dot{z} = -A_0 z$	289	
	9.3	Final state observability with geometric conditions	295	
	9.4	A global Carleman estimate for the heat operator	298	
	9.5	Final state observability without geometric conditions	312	
	9.6	Remarks and bibliographical notes on Chapter 9	314	
10	Bound	lary Control Systems		
	10.1	What is a boundary control system?	317	
	10.2	Two simple examples in one space dimension	322	
		10.2.1 A one-dimensional heat equation with		
		Neumann boundary control	323	
		10.2.2 A string equation with Neumann boundary control	324	
	10.3	A string equation with variable coefficients	326	
	10.4	An Euler-Bernoulli beam with torque control	330	
	10.5	An Euler–Bernoulli beam with angular velocity control	334	
	10.6	The Dirichlet map on an n -dimensional domain $\ldots \ldots \ldots$	337	
	10.7	Heat and Schrödinger equations with boundary control	341	
	10.8	The convection-diffusion equation with boundary control	344	
	10.9	The wave equation with Dirichlet boundary control	347	
	10.10	Remarks and bibliographical notes on Chapter 10	352	
11	Controllability			
	11.1	Some controllability concepts	355	
	11.2	The duality between controllability and observability \ldots .	357	
	11.3	Simultaneous controllability and the reachable space		
		with \mathcal{H}^1 inputs	364	
	11.4	An example of a coupled system	371	

11.5	Null-controllability for heat and convection-diffusion			
	equations	375		
11.6	Boundary controllability for Schrödinger and wave equations	378		
	11.6.1 Boundary controllability for the Schrödinger equation \therefore	379		
	11.6.2 Boundary controllability for the wave equation	380		
11.7	Remarks and bibliographical notes on Chapter 11	381		
12 Appe	endix I: Some Background on Functional Analysis			
12.1	The closed-graph theorem and some consequences	385		
12.2	Compact operators	387		
12.3	The square root of a positive operator	391		
12.4	The Fourier and Laplace transformations	394		
12.5	Banach space-valued L^p functions	399		
13 Appe	endix II: Some Background on Sobolev Spaces			
13.1	Test functions	404		
13.2	Distributions on a domain	408		
13.3	The operators div, grad, rot and Δ	412		
13.4	Definition and first properties of Sobolev spaces	415		
13.5	Regularity of the boundary and Sobolev spaces on manifolds	420		
13.6	Trace operators and the space $\mathcal{H}^{1}_{\Gamma_{0}}(\Omega)$	424		
13.7	The Green formulas and extensions of trace operators	430		
14 Appe	ndix III: Some Background on Differential Calculus			
14.1	Critical points and Sard's theorem	435		
14.2	Existence of Morse functions on Ω	437		
14.3	Proof of Theorem 9.4.3	441		
15 Appe	ndix IV: Unique Continuation for Elliptic Operators			
15.1	A Carleman estimate for elliptic operators	445		
15.2	The unique continuation results	454		
Bibliogra	aphy	459		
List of N	List of Notation			
Index				