Contents

1	Intr	oductio	n	1
	1.1	A Few	Time Series Concepts	2
		1.1.1	Some Simple Stochastic Processes	3
		1.1.2	Stationarity, Mean Reversion, Impulse Responses	6
		1.1.3	Numerical Exercise: Simulating Simple	
			Stochastic Processes	9
	1.2	Structu	Iral Macroeconomic Models	12
		1.2.1	Static Structural Models	12
		1.2.2	Dynamic Structural Models	16
		1.2.3	Stochastic, Dynamic Structural Models	21
		1.2.4	Stochastic Simulation	23
		1.2.5	Numerical Exercise – Simulating Dynamic, Structural	
			Macroeconomic Models	24
	1.3	Why a	re Economic Growth Models Interesting?	27
		1.3.1	Microeconomic Foundations of Macroeconomics	27
		1.3.2	Lucas' Critique on Economic Policy Evaluation	33
		1.3.3	A Brief Overview of Developments on Growth Theory	35
		1.3.4	The Use of Growth Models for Actual Policy Making	39
	1.4	Numer	ical Solution Methods	40
		1.4.1	Why do we Need to Compute Numerical Solutions	
			to Growth Models?	40
		1.4.2	Stability	42
		1.4.3	Indeterminacy	43
		1.4.4	The Type of Questions We Ask and the Conclusions	
			We Reach	44
	1.5	Synops	sis of the Book	48
2	The	Neoclas	ssical Growth Model Under a Constant Savings Rate	53
	2.1		uction	53
	2.2	Return	s to Scale and Sustained Growth	54

xiii

	2.3	The Ne	eoclassical Growth Model of Solow and Swan	59
		2.3.1	Description of the Model	60
		2.3.2	The Dynamics of the Economy	61
		2.3.3	Steady-State	64
		2.3.4	The Transition Towards Steady-State	68
		2.3.5	The Duration of the Transition to Steady-State	69
		2.3.6	The Growth Rate of Output and Consumption	69
		2.3.7	Convergence in the Neoclassical Model	71
		2.3.8	A Special Steady-State: The Golden Rule of Capital	
			Accumulation	73
	2.4	Solving	g the Continuous-Time Solow–Swan Model	76
		2.4.1	Solution to the Exact Model	76
		2.4.2	The Linear Approximation to the Solow–Swan Model	77
		2.4.3	Changes in Structural Parameters	79
		2.4.4	Dynamic Inefficiency	82
	2.5	The De	eterministic, Discrete-Time Solow Swan Model	85
		2.5.1	The Exact Solution	85
		2.5.2	Approximate Solutions to the Discrete-Time Model	87
		2.5.3	Numerical Exercise – Solving the Deterministic	
			Solow–Swan Model	89
		2.5.4	Numerical Exercise – A Permanent Change	
			in the Savings Rate	91
		2.5.5	Numerical Exercise – Dynamic Inefficiency	93
	2.6		ochastic, Discrete Time Version of the Solow-Swan Model	95
		2.6.1	Numerical Exercise - Solving the Stochastic	
			Solow-Swan Model	96
	2.7	Exerci	ses	98
3	Onti	mal Gr	owth. Continuous Time Analysis	101
5	3.1		ontinuous-Time Version of the Cass-Koopmans Model	
	5.1	3.1.1	Optimality Conditions for the Cass-Koopmans Model	
		3.1.2	The Instantaneous Elasticity of Substitution	
		5.1.2	of Consumption (<i>IES</i>)	104
		3.1.3	Risk Aversion and the Intertemporal Substitution	
		5.1.5	of Consumption	106
		3.1.4	Keynes–Ramsey Condition	
		3.1.5	The Optimal Steady-State	
		3.1.6	Numerical Exercise: The Sensitivity of Steady-State	
			Levels to Changes in Structural Parameters	110
		3.1.7	Existence, Uniqueness and Stability of Long-Run	
			Equilibrium – A Graphical Discussion	112
		3.1.8	Suboptimality of the Golden Rule	
	3.2		ty and Convergence	
		3.2.1	The Trajectory for Income	

4

	3.2.2	Numerical Exercise – Characterizing the Transition	
		after a Change in a Structural Parameter	120
3.3	Interpr	reting the Central Planners's Model as a Competitive	
	Equilit	brium Economy	126
	3.3.1	The Efficiency of Competitive Equilibrium	
3.4	A Con	npetitive Equilibrium with Government	
	3.4.1	The Structure of the Economy	131
	3.4.2	Feasible Stationary Public Expenditure and Financing	
		Policies	
	3.4.3	Competitive Equilibrium	
	3.4.4	Global Constraint of Resources	
	3.4.5	The Representative Agent Problem	
3.5	On the	Efficiency of Equilibrium with Government	138
	3.5.1	On the Efficiency of Equilibrium Under Lump-Sum Taxes	
		and Debt	138
	3.5.2	The Inefficiency of the Competitive Equilibrium	
		Allocation Under Distortionary Taxes	
3.6	The Ri	icardian Doctrine	
	3.6.1	The Ricardian Doctrine Under Non-Distorting Taxes	
	3.6.2	Failure of the Ricardian Doctrine Under Distorting Taxes	
3.7	Appen	dix	149
	3.7.1	Appendix 1 – Log-linear Approximation to the Continuous	
		Time Version of Cass-Koopmans Model	149
	3.7.2	Appendix 2 – An Alternative Presentation	
		of the Equivalence Between the Planner's	
		and the Competitive Equilibrium Mechanisms	
		in an Economy Without Government	
3.8	Exerci	ses	153
0			
		rowth. Discrete Time Analysis	
4.1		te-Time, Deterministic Cass-Koopmans Model	
	4.1.1	The Global Constraint of Resources	
	4.1.2	Discrete-Time Formulation of the Planner's Problem	
	4.1.3	The Optimal Steady-State	
	4.1.4	The Dynamics of the Model: The Phase Diagram	
	4.1.5	Transversality Condition in Discrete Time	
4.0	4.1.6	Competitive Equilibrium with Government	
4.2		Policy in the Cass-Koopmans Model	
	4.2.1	The Deterministic Case	167
	4.2.2	Numerical Exercise – Solving the Deterministic	
		Competitive Equilibrium with Taxes	
	4.2.3	Numerical Exercise – Fiscal Policy Evaluation	
4.3		dices.	185
	4.3.1	A Reformulation of the Stability Condition	
		for the Deterministic Version of the Model	185

			The Intertemporal Government Budget Constraint	
	4.4		ndix 2: The Ricardian Proposition Under Non-Distortionary	
			in Discrete Time	
	4.5	Exerci	ises	. 191
5	Nun		Solution Methods	
	5.1	Nume	rical Solutions and Simulation Analysis	. 195
	5.2	Analy	tical Solutions to Simple Growth Models	. 197
		5.2.1	A Model with Full Depreciation	. 197
		5.2.2	A Model with Leisure in the Utility Function	. 200
		5.2.3	Numerical Solutions of the Growth Model	
			Under Full Depreciation	. 202
	5.3	Solvin	ag a Simple, Stochastic Version of the Planner's Problem	
		5.3.1	Solving the Linear-Quadratic Approximation	
			to the Planner's Problem	. 204
		5.3.2	The Log-Linear Approximation to the Model	
		5.3.3	The Blanchard-Kahn Solution Method for the Stochastic	
			Planner's Problem. Log-Linear Approximation	. 212
		5.3.4	Uhlig's Undetermined Coefficients Approach.	
			Log-Linear Approximation	. 215
		5.3.5	Sims' Eigenvalue-Eigenvector Decomposition Method	
			Using a Linear Approximation to the Model	. 217
	5.4	Solvin	g the Stochastic Representative Agent's Problem	
		with T	axes	. 225
		5.4.1	The Log-Linear Approximation	. 227
		5.4.2	Numerical Exercise: Solving the Stochastic Representative	
			Agent's Model with Taxes Through Blanchard and Kahn's	
			Approach. Log-Linear Approximation	. 228
		5.4.3	Numerical Exercise: Computing Impulse Responses	
			to a Technology Shock. Log-Linear Approximation	. 232
		5.4.4	Numerical Exercise: Solving the Stochastic Representative	
			Agent's Model with Taxes Through the Eigenvector	
			and Eigenvalue Decomposition Approach.	
			Linear Approximation	
	5.5	Nonlir	near Numerical Solution Methods	
		5.5.1	Parameterized Expectations	
		5.5.2	Projection Methods	
	5.6		ndix - Solving the Planner's Model Under Full Depreciation .	
	5.7	Exerci	ises	. 253
6	End	ogenou	Is Growth Models	. 257
	6.1		<i>K</i> Model	
		6.1.1	Balanced Growth Path	
		6.1.2	Transitional Dynamics	
		6.1.3	Boundedness of Time-Aggregate Utility	

7

6	5.2	The D	viscrete Time Version of the Model	262
		6.2.1	The Transversality Condition and Bounded Utility	265
		6.2.2	Absence of Transitional Dynamics: Relationship	
			Between the Stock of Physical Capital and Consumption	266
6	5.3	Stabili	ity in the AK Model	267
6	5.4	Effect	s from Transitory Changes in Policy Parameters	271
		6.4.1	A Policy Intervention	272
		6.4.2	A Comparison with the Cass-Koopmans Economy	273
6	5.5	Dynar	nic Laffer Curves	275
		6.5.1	Numerical Exercise on Dynamic Laffer Curves	
6	6.6	Solvin	ng the Stochastic, Discrete Time Version of the AK Model	280
		6.6.1	A Linear Approximation to the Stochastic AK Model	282
		6.6.2	Numerical Exercise: Solving the Stochastic AK Model	285
6	5.7	An Er	ndogenous Growth Model with Productive Public	
		Expen	iditures: Barro's Model	286
6	5.8	Transi	itional Dynamics in Endogenous Growth: The Jones	
		and M	Ianuelli Model	. 288
		6.8.1	Steady-State	. 290
		6.8.2	Solving the Deterministic Version of Jones and Manuelli's	
			Model Through a Linear Approximation	. 291
6	5.9	The St	tochastic Version of Jones and Manuelli Model	
		6.9.1	Deterministic Balanced Growth Path	. 295
		6.9.2	Transforming the Model in Stationary Ratios	. 295
		6.9.3	The Phase Diagram of the Deterministic Version	
			of the Jones-Manuelli Model: Transitional Dynamics	. 296
		6.9.4	Computing the Dynamics: Log-Linear Approximation	. 298
		6.9.5	Numerical Exercise: Solving the Jones	
			and Manuelli Model	. 301
		6.9.6	The Stochastic AK Model as a Special Case	301
6	5.10	Exerci	ises	. 302
A	\dd		Endogenous Growth Models	
7	7.1		luction	
7	7.2	A Vari	iety of Producer Products	
		7.2.1	The Economy	
		7.2.2	The Inefficiency of the Equilibrium Allocation	. 314
		7.2.3	A Stochastic Version of the Economy with a Variety	
			of Intermediate Goods	
7	7.3	Techn	ological Diffusion and Growth	. 323
		7.3.1	The Problem of the Follower Country	
		7.3.2	Deterministic Steady-State	. 326
		7.3.3	Computing the Numerical Solution by Log-Linear	
			Approximations and Numerical Derivatives	. 328

		7.3.4	Numerical Exercise: Solving the Model with Varieties	
			of Intermediate Goods, and the Diffusion Growth Model	. 332
	7.4	Schun	npeterian Growth	333
		7.4.1	The Economy	334
		7.4.2	Computing Equilibrium Trajectories	. 338
		7.4.3	Deterministic Steady-State	. 341
	7.5	Endog	genous Growth with Accumulation of Human Capital	. 342
		7.5.1	The Economy	. 343
		7.5.2	The Competitive Equilibrium	. 347
		7.5.3	Analyzing the Deterministic Steady-State	. 349
		7.5.4	Numerical Exercise: Steady-State Effects of Fiscal Policy .	. 352
		7.5.5	Computing Equilibrium Trajectories in a Stochastic Setup	
			Under the Assumption of Rational Expectations	. 353
		7.5.6	Indeterminacy of Equilibria	. 363
		7.5.7	Numerical Exercise: The Correlation	
			Between Productivity and Hours Worked in the Human	
			Capital Accumulation Model	. 374
	7.6	Exerci	ises	. 376
~	~			
8			Monetary Economies: Steady-State Analysis	_
			y Policy	
	8.1		uction	
	8.2		al Growth in a Monetary Economy: The Sidrauski Model	
		8.2.1	1 0	
		8.2.2	Steady-State in the Monetary Growth Economy	
		8.2.3	Golden Rule	
	8.3		y-State Policy Analysis	
		8.3.1	Optimal Steady-State Rate of Inflation	
		8.3.2		. 392
	8.4		Iodelling Issues: Nominal Bonds and the Timing of Real	
			ces	. 394
		8.4.1	Nominal Bonds: The Relationship Between Real	
			and Nominal Interest Rates	. 395
		8.4.2	Real Balances in the Utility Function: At the Beginning	
		~	or at the End of the Period?	. 397
		8.4.3	Numerical Exercise: Optimal Rate of Inflation	
			Under Alternative Assumptions on Preferences	
	8.5		tary Policy Analysis Under Consumption and Income Taxes .	
		8.5.1	Steady-State	. 403
		8.5.2	Numerical Exercise: Computation of Steady-State Levels	405
			Under Alternative Policy Choices	
	8.6		ary Policy Under Endogenous Labor Supply	. 406
		8.6.1	The Neutrality of Monetary Policy Under Endogenous	
			Labor Supply	. 406
		8.6.2	Numerical Exercise: Evaluation of Steady-State Policies	
			with an Endogenous Labour Supply	. 411

	8.7	Optim	al Monetary Policy Under Distortionary Taxation	
		and En	ndogenous Labor	413
		8.7.1	The Model	414
		8.7.2	Implementability Condition	417
		8.7.3	The Ramsey Problem	418
	8.8	Exerci	ses	419
9	Trai	nsitiona	I Dynamics in Monetary Economies:	
	Nun	nerical	Solutions	423
	9.1	Introdu	uction	423
	9.2	Stabili	ty of Public Debt	424
	9.3	Altern	ative Strategies for Monetary Policy: Control of Nominal	
			vs. Money Growth Control	426
	9.4	Detern	ninistic Monetary Model with the Monetary Authority	
			ing Money Growth	427
		9.4.1	Steady-State	429
		9.4.2	Solution Through a Log-Linear Approximation	430
		9.4.3	Complex Eigenvalues	
	9.5	Detern	ninistic Monetary Model with the Monetary Authority	
		Choos	ing Nominal Interest Rates	437
	9.6		tional Effects of Policy Interventions	
		9.6.1	Solving the Model with Nominal Interest Rates as Control	
			Variable, Using a Linear Approximation	442
		9.6.2	Numerical Exercise: Changes in Nominal Interest Rates	
		9.6.3	Solving the Model with Money Growth as Control	
			Variable, Using a Linear Approximation	445
		9.6.4	Numerical Exercise: Gradual vs. Drastic Changes	
			in Money Growth	448
	9.7	The St	tochastic Version of the Monetary Model	
		9.7.1	The Monetary Authority Chooses Nominal Interest Rates	
		9.7.2	The Monetary Authority Chooses Money Supply Growth	
	9.8	A New	v Keynesian Monetary Model	
		9.8.1	A Model Without Capital Accumulation: Ireland's (2004)	470
		9.8.2	A New Keynesian Monetary Model with Capital	
			Accumulation	477
	9.9	Appen	idix: In a Log-Linear Approximation, $E_t \hat{\pi}_{t+1} = \hat{\iota}_t - \hat{r}_t \dots \dots$	491
	9.10		ises	
10	Mat	hemati	cal Appendix	495
	10.1	The D	eterministic Control Problem in Continuous Time	495
		10.1.1	Transversality Condition	496
		10.1.2	The Discounted Problem	496
			Calculus of Variations	
	10.2	The D	eterministic Control Problem in Discrete Time	499
	10.3	First C	Order Differential Equations	501

	501		
Coefficients	. 501		
10.3.2 2. First Order Differential Equations with Variable			
Coefficients	. 504		
10.4 Matrix Algebra	. 506		
10.4.1 The 2×2 Case	. 508		
10.4.2 Systems with a Saddle Path Property	. 510		
10.4.3 Imposing Stability Conditions Over Time	. 510		
10.5 Some Notes on Complex Numbers	. 513		
10.6 Solving a Dynamic Two-Equation System with Complex Roots	. 514		
References			
Index	. 521		