Table of Contents

1	Introduction		1
	1.1	Lower bounding OPT	2
		1.1.1 An approximation algorithm for cardinality vertex cover	3
		1.1.2 Can the approximation guarantee be improved?	3
	1.2	Well-characterized problems and min-max relations	5
	1.3	Exercises	7
	1.4	Notes	10

Part I. Combinatorial Algorithms

Set	Cover	15			
2.1	The greedy algorithm	16			
2.2		17			
2.3	Application to shortest superstring	19			
2.4		22			
2.5	Notes	26			
\mathbf{Ste}	iner Tree and TSP	27			
3.1		27			
		28			
3.2		30			
		31			
	-	32			
3.3		33			
3.4	Notes	37			
\mathbf{Mu}	Multiway Cut and <i>k</i> -Cut				
4.1	The multiway cut problem	38			
4.2		40			
4.3		44			
4.4		46			
	2.1 2.2 2.3 2.4 2.5 Stei 3.1 3.2 3.3 3.4 Mu 4.1 4.2 4.3	 2.2 Layering			

5	k-C	enter	. 47
	5.1	Parametric pruning applied to metric k-center	. 47
	5.2	The weighted version	. 50
	5.3	Exercises	52
	5.4	Notes	53
6	Fee	dback Vertex Set	54
	6.1	Cyclomatic weighted graphs	54
	6.2	Layering applied to feedback vertex set	57
	6.3	Exercises	60
	6.4	Notes	60
7	Sho	rtest Superstring	61
	7.1	A factor 4 algorithm	61
	7.2	Improving to factor 3	64
		7.2.1 Achieving half the optimal compression	66
	7.3	Exercises	66
	7.4	Notes	67
8	Kna	upsack	68
	8.1	A pseudo-polynomial time algorithm for knapsack	69
	8.2	An FPTAS for knapsack	69
	8.3	Strong NP-hardness and the existence of FPTAS's	71
		8.3.1 Is an FPTAS the most desirable approximation	
		algorithm?	72
	8.4	Exercises	72
	8.5	Notes	73
9	Bin	Packing	74
	9.1	An asymptotic PTAS	74
	9.2	Exercises	77
	9.3	Notes	78
10	Min	imum Makespan Scheduling	79
		Factor 2 algorithm	79
		A PTAS for minimum makespan	80
		10.2.1 Bin packing with fixed number of object sizes	81
		10.2.2 Reducing makespan to restricted bin packing	81
	10.3	Exercises	83
	10.4	Notes	83
11	Euc	lidean TSP	84
		The algorithm	84
		Proof of correctness	87
		Exercises	89
		Notes	89

Part	п.	LP-Based	Algorithms
------	----	----------	------------

12	Introduction to LP-Duality	93 93
	12.2 Min-max relations and LP-duality	95 97
	12.3 Two fundamental algorithm design techniques	
	12.3.1 A comparison of the techniques and the notion of	
	integrality gap	
	12.4 Exercises	
	12.5 Notes	107
13	Set Cover via Dual Fitting	
	13.1 Dual-fitting-based analysis for the greedy set cover algorithm	108
	13.1.1 Can the approximation guarantee be improved?	
	13.2 Generalizations of set cover	
	13.2.1 Dual fitting applied to constrained set multicover	
	13.3 Exercises	
	13.4 Notes	118
14	Rounding Applied to Set Cover	
	14.1 A simple rounding algorithm	
	14.2 Randomized rounding	
	14.3 Half-integrality of vertex cover	
	14.4 Exercises	
	14.5 Notes	124
15	Set Cover via the Primal–Dual Schema	
	15.1 Overview of the schema	
	15.2 Primal-dual schema applied to set cover	
	15.3 Exercises	129
	15.4 Notes	129
16	Maximum Satisfiability	
	16.1 Dealing with large clauses	132
	16.2 Derandomizing via the method of conditional expectation	
	16.3 Dealing with small clauses via LP-rounding	134
	16.4 A 3/4 factor algorithm	136
	16.5 Exercises	137
	16.6 Notes	139
17	Scheduling on Unrelated Parallel Machines	140
	17.1 Parametric pruning in an LP setting	
	17.2 Properties of extreme point solutions	141
	17.3 The algorithm	

	17.4 Additional properties of extreme point solutions
	17.5 Exercises
	17.6 Notes
18	Multicut and Integer Multicommodity Flow in Trees 146
	18.1 The problems and their LP-relaxations 146
	18.2 Primal-dual schema based algorithm 149
	18.3 Exercises
	18.4 Notes
19	Multiway Cut
	19.1 An interesting LP-relaxation
	19.2 Randomized rounding algorithm 157
	19.3 Half-integrality of node multiway cut
	19.4 Exercises
	19.5 Notes
	10.0 1.0000
20	Multicut in General Graphs 168
	20.1 Sum multicommodity flow
	20.2 LP-rounding-based algorithm 170
	20.2.1 Growing a region: the continuous process
	20.2.2 The discrete process
	20.2.3 Finding successive regions
	20.3 A tight example
	20.4 Some applications of multicut
	20.5 Exercises
	20.6 Notes
	20.0 10065 179
21	Sparsest Cut
	21.1 Demands multicommodity flow
	21.2 Linear programming formulation
	21.3 Metrics, cut packings, and ℓ_1 -embeddability
	21.3.1 Cut packings for metrics
	21.3.2 ℓ_1 -embeddability of metrics
	21.0.2 ℓ_1 -embeddings for metrics
	21.4.1 Ensuring that a single edge is not overshrunk 187
	21.4.2 Ensuring that no edge is overshrunk
	21.5 LP-rounding-based algorithm
	21.6 Applications
	21.6.1 Edge expansion
	21.6.2 Conductance
	21.6.3 Balanced cut
	21.6.4 Minimum cut linear arrangement
	21.7 Exercises
	21.8 Notes

22	Steiner Forest	198
	22.1 LP-relaxation and dual	198
	22.2 Primal-dual schema with synchronization	199
	22.3 Analysis	
	22.4 Exercises	
	22.5 Notes	
23	Steiner Network	213
	23.1 The LP-relaxation and half-integrality	
	23.2 The technique of iterated rounding	
	23.3 Characterizing extreme point solutions	
	23.4 A counting argument	
	23.5 Exercises	
	23.6 Notes	
	20.0 110005	201
24	Facility Location	232
	24.1 An intuitive understanding of the dual	
	24.2 Relaxing primal complementary slackness conditions	
	24.3 Primal-dual schema based algorithm	
	24.4 Analysis	
	24.4.1 Running time	
	24.4.2 Tight example	
	24.5 Exercises	
	24.6 Notes	
	24.0 10000	212
25	k-Median	243
	25.1 LP-relaxation and dual	
	25.2 The high-level idea	244
	25.3 Randomized rounding	
	25.3.1 Derandomization	
	25.3.2 Running time	249
	25.3.3 Tight example	
	25.3.4 Integrality gap	
	25.4 A Lagrangian relaxation technique	
	for approximation algorithms	250
	25.5 Exercises	
	25.6 Notes	
	20.0 10000	204
26	Semidefinite Programming	256
	26.1 Strict quadratic programs and vector programs	
	26.2 Properties of positive semidefinite matrices	
	26.3 The semidefinite programming problem	
	26.4 Randomized rounding algorithm	
	26.5 Improving the guarantee for MAX-2SAT	264
	26.6 Exercises	
	26.7 Notes	
		209

Part III. Other Topics

27	Shortest Vector
	27.1 Bases, determinants, and orthogonality defect
	27.2 The algorithms of Euclid and Gauss
	27.3 Lower bounding OPT using Gram-Schmidt orthogonalization 278
	27.4 Extension to n dimensions
	27.5 The dual lattice and its algorithmic use
	27.6 Exercises
	27.7 Notes
28	Counting Problems
	28.1 Counting DNF solutions
	28.2 Network reliability
	28.2.1 Upperbounding the number of near-minimum cuts 298
	28.2.2 Analysis 300
	28.3 Exercises
	28.4 Notes
29	Hardness of Approximation
	29.1 Reductions, gaps, and hardness factors 306
	29.2 The PCP theorem 309
	29.3 Hardness of MAX-3SAT 311
	29.4 Hardness of MAX-3SAT with bounded occurrence
	of variables
	29.5 Hardness of vertex cover and Steiner tree
	29.6 Hardness of clique 318
	29.7 Hardness of set cover
	29.7.1 The two-prover one-round characterization of NP \ldots 322
	29.7.2 The gadget
	29.7.3 Reducing error probability by parallel repetition 325
	29.7.4 The reduction
	29.8 Exercises
	29.9 Notes
30	Open Problems
	30.1 Problems having constant factor algorithms
	30.2 Other optimization problems
	30.3 Counting problems 338

Appendix

Α	An	Overview of Complexity Theory
	for	the Algorithm Designer
	A.1	Certificates and the class NP 343
	A.2	Reductions and NP-completeness
	A.3	NP-optimization problems and approximation algorithms 345
		A.3.1 Approximation factor preserving reductions
	A.4	Randomized complexity classes
	A.5	Self-reducibility
	A.6	Notes
в	Bas	ic Facts from Probability Theory
	B.1	Expectation and moments 352
	B.2	Deviations from the mean
	B.3	Basic distributions
	B.4	Notes
Re	feren	ces
Pro	oblen	n Index
Suł	oject	Index