Contents

Prefa	ce		page xiii
1	Algorithms and Computers		1
	1.1	Introduction	1
	1.2	Computers	3
	1.3	Software and Computer Languages	5
	1.4	Data Structures	8
	1.5	Programming Practice	9
		References	10
2	Computer Arithmetic		11
	2.1	Introduction	11
	2.2	Positional Number Systems	12
	2.3	Fixed Point Arithmetic	15
	2.4	Floating Point Representations	18
	2.5	Living with Floating Point Inaccuracies	21
	2.6	The Pale and Beyond	26
	2.7	Conditioned Problems and Stable Algorithms	30
		Programs and Demonstrations	32
		Exercises	33
		References	35
3	Mat	trices and Linear Equations	37
	3.1	Introduction	37
	3.2	Matrix Operations	38
	3.3	Solving Triangular Systems	40
	3.4	Gaussian Elimination	41
	3.5	Cholesky Decomposition	47
	3.6	Matrix Norms	50
	3.7	Accuracy and Conditioning	52
		Programs and Demonstrations	56
		Exercises	58
		References	59
4	Mo	re Methods for Solving Linear Equations	61
	4.1	Introduction	61
	4.2	Full Elimination with Complete Pivoting	61

Contents

	4.3	Banded Matrices	65
	4.4	Applications to ARMA Time-Series Models	67
	4.5	Toeplitz Systems	70
	4.6	Sparse Matrices	73
	4.7	Iterative Methods	76
		Programs and Demonstrations	78
		Exercises	78
		References	80
5	Regr	ression Computations	82
	5.1	Introduction	82
	5.2	Condition of the Regression Problem	84
	5.3	Solving the Normal Equations	87
	5.4	Gram-Schmidt Orthogonalization	88
	5.5	Householder Transformations	91
	5.6	Householder Transformations for Least Squares	92
	5.7	Givens Transformations	95
	5.8	Givens Transformations for Least Squares	95
	5.9	Regression Diagnostics	98
	5.10	Hypothesis Tests	100
	5.11	Conjugate Gradient Methods	103
	5.12	Doolittle, the Sweep, and All Possible Regressions	106
	5.13	Comments	108
		Programs and Demonstrations	108
		Exercises	109
		References	111
6	Eiger	nproblems	114
	6.1	Introduction	114
	6.2	Theory	114
	6.3	Power Methods	116
	6.4	The Symmetric Eigenproblem and Tridiagonalization	119
	6.5	The QR Algorithm	121
	6.6	Singular Value Decomposition	123
	6.7	Applications	126
	6.8	Complex Singular Value Decomposition	130
		Programs and Demonstrations	132
		Exercises	133
		References	136
7	Func	tions: Interpolation, Smoothing, and Approximation	137
	7.1	Introduction	137
	7.2	Interpolation	139
	7.3	Interpolating Splines	142
	7.4	Curve Fitting with Splines: Smoothing and Regression	145
	7.5	Mathematical Approximation	148

		Contents	ix
	7.6	Practical Approximation Techniques	152
	7.7	Computing Probability Functions	155
		Programs and Demonstrations	162
		Exercises	164
		References	168
8	Intro	duction to Optimization and Nonlinear Equations	170
	8.1	Introduction	170
	8.2	Safe Univariate Methods: Lattice Search, Golden Section,	
	0.0	and Bisection	172
	8.3	Root Finding	1/5
	8.4	First Digression: Stopping and Condition	181
	8.5 9.4	Multivariate Newton's Methods	185
	8.0 9.7	Second Digression: Numerical Differentiation	104
	0.7 8 8	Condition and Scaling	107
	8.0	Implementation	192
	0.9	Programs and Demonstrations	193
		Fyercises	196
		References	198
9	Mavi	imum Likelihood and Nonlinear Regression	190
,	91	Introduction	199
	9.2	Notation and Asymptotic Theory of Maximum Likelihood	200
	9.3	Information, Scoring, and Variance Estimates	206
	9.4	An Extended Example	208
	9.5	Concentration, Iteration, and the EM Algorithm	210
	9.6	Multiple Regression in the Context of Maximum Likelihood	216
	9.7	Generalized Linear Models	217
	9.8	Nonlinear Regression	221
	9.9	Parameterizations and Constraints	225
		Programs and Demonstrations	229
		Exercises	231
		References	233
10	Num	erical Integration and Monte Carlo Methods	235
	10.1	Introduction	235
	10.2	Motivating Problems	236
	10.3	One-Dimensional Quadrature	242
	10.4	Numerical Integration in Two or More Variables	249
	10.5	Uniform Pseudorandom Variables	256
	10.6	Quasi-Monte Carlo Integration	263
	10.7	Strategy and Tactics	268
		Programs and Demonstrations	272
		Exercises	274
		Keterences	276

11	Gene	rating Random Variables from Other Distributions	279
	11.1	Introduction	279
	11.2	General Methods for Continuous Distributions	280
	11.3	Algorithms for Continuous Distributions	284
	11.4	General Methods for Discrete Distributions	297
	11.5	Algorithms for Discrete Distributions	301
	11.6	Other Randomizations	306
	11.7	Accuracy in Random Number Generation	310
		Programs and Demonstrations	313
		Exercises	314
		References	317
12	Statis	stical Methods for Integration and Monte Carlo	319
	12.1	Introduction	319
	12.2	Distribution and Density Estimation	319
	12.3	Distributional Tests	326
	12.4	Importance Sampling and Weighted Observations	329
	12.5	Testing Importance Sampling Weights	335
	12.6	Laplace Approximations	337
	12.7	Randomized Quadrature	339
	12.8	Spherical-Radial Methods	341
		Programs and Demonstrations	346
		Exercises	348
		References	349
13	Marl	kov Chain Monte Carlo Methods	351
	13.1	Introduction	351
	13.2	Markov Chains	353
	13.3	Gibbs Sampling	354
	13.4	Metropolis–Hastings Algorithm	359
	13.5	Time-Series Analysis	362
	13.6	Adaptive Acceptance/Rejection	366
	13.7	Diagnostics	370
		Programs and Demonstrations	374
		Exercises	374
		References	376
14	Sorti	ng and Fast Algorithms	379
	14.1	Introduction	379
	14.2	Divide and Conquer	379
	14.3	Sorting Algorithms	381
	14.4	Fast Order Statistics and Related Problems	384
	14.5	Fast Fourier Transform	385
	14.6	Convolutions and the Chirp-z Transform	389
	14.7	Statistical Applications of the FFT	391
	14.8	Combinatorial Problems	401

х

Contents	xi
Programs and Demonstrations	405
Exercises	409
References	412
Table of Programs and Demonstrations	415
Author Index	419
Subject Index	425