Table of Contents

Chapter 1: Evolutionary Developmental Biology.

1.	1 Introd	duction to Development and its molecular basis.	9	
	1.1.1	Definition and history of Developmental Biology	10	
	1.1.2	The new synthesis of Evo-Devo	10	
	1.1.3 The Cis-Regulatory hypothesis and the predictability of morphologic			
		evolution	15	
	1.1.4	Gene duplication: exception or common start?	16	
	1.1.5	The new horizons of Evo-Devo.	19	
1.2	Plant	Developmental Biology.	19	
	1.2.1	Introduction to Plant Developmental Biology.	19	
	1.2.2	The shoot apical meristem: growth potential and regulation.	20	
	1.2.3	Leaf development: description, axes and variation.	25	
	1.2.4		28	
	1.2.5	Hormonal control of leaf development.	31	
	1.2.6	Molecular pathways controlling leaf growth.	33	
	1 .2. 7	Comparative development studies.	39	
1.3	HD-Z	<i>IP</i> gene class	40	
	1.3.1	Structure, role and origin of the homeobox genes in development.	40	
	1.3.2	HD-ZIP class: roles and activity.	41	
1.4	Ecological and selective pressures influencing leaf form.		43	
1.5	1.5 Aims and objectives.			
	_			
<u>Chap</u>	<u>ter 2: <i>L</i></u>	<u>CATE MERISTEM IDENTITY1 (LMI1): a growth modulator of the leaf ma</u>	<u>rgin</u>	
and st	ipules		49	
2.1	Introd	luction.	50	
2.2	Results.		52	
	2.2.1 G	Senetic interaction of <i>LMI1</i> with known leaf development genes.	52	
	2.2.2 T	'he <i>lmi1</i> basal lobe is derived from the stipule.	53	
	2.2.3 L	M11 represses cell division and tissue growth.	53	
		M11 induces differentiation and influences allometry.	56	
		M11 balances the endoreduplication/mitosis ratios.	59	
	2.2.6 L	MI1 also controls stipule growth in Cardamine hirsuta.	61	
2.3	Discu	ssion.	64	
	2.3.1 L	M11-induced endoreduplication sculpts leaf shape.	64	
	2.3.2 E	volutionary significance of <i>LMI1</i> function.	66	

2.3.3 Common themes in organ shape determination.	66
2.4 Materials and Methods.	67
Chapter 3: Evolution of the REDUCED COMPLEXITY (RCO) gene and eco-physiolog	<u>ical</u>
significance of leaf shape change in the Brassicaceae.	71
3.1 Introduction.	72
3.2 Results.	74
3.2.1 A 500 bp enhancer drives <i>RCO</i> proximal expression and underlies regula	tory
divergence.	74
3.2.2 The <i>LMI1/RCO</i> cluster shows high synteny in the Brassicaceae family.	79
3.2.3 RCO function is conserved between Brassicaceae species.	80
3.2.4 Physiological benefits of <i>RCO</i> -controlled complex leaves.	83
3.3 Discussion.	88
2.2.1 The PCO as a low driver for mornhological diversity	88
3.3.1 The <i>RCO</i> as a key driver for morphological diversity. 3.3.2 Ecological significance of leaf shape variation.	89
3.4 Materials and Methods.	92
Chapter 4: Genetic interaction of RCO with known leaf developmental genes.	95
4.1 Introduction	96
4.2 Results	97
4.2.1 CUC2 and RCO genetic interaction.	97
4.2.2 Interaction between RCO and the BP/AS1 network.	100
4.2.3 TCP-mediated differentiation inhibits RCO activity.	104
4.2.4 Concurrent leaf expression of <i>STM</i> and <i>RCO</i> in <i>A.thaliana</i> produces compou leaves.	
icaves.	108
4.3 Discussion	111
4.3.1 Genetic network analysis as a path to understanding trait diversity.	111
4.4 Materials and Methods.	114
Chapter 5: General discussion	116
5.1 Cell and tissue interplay to regulate organ growth and shape.	115
5.2 Local growth repression, a key force for organ morphogenesis and evolution?	117
5.3 The RCO duplication as an iconic example of morphological evolution.	119
5.4 Ecological significance of different leaf morphologies.	121
	123