Contents

Preface		xiii	
Notati	on		xvii
PART	I F	UNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS	1
1	Equa	tions of Motion	3
	1.1	Time Derivatives for Fluids	3
	1.2	The Mass Continuity Equation	7
	1.3	The Momentum Equation	11
	1.4	The Equation of State	13
	1.5	Thermodynamic Relations	14
	1.6	Thermodynamic Equations for Fluids	21
	1.7	Thermodynamics of Seawater	30
	1.8	Sound Waves	40
	1.9	Compressible and Incompressible Flow	41
	1.10	The Energy Budget	42
	1.11	An Introduction to nondimensionalization and Scaling	46
		Appendix A: Thermodynamics of an Ideal gas from the Gibbs function	47
		Appendix B: The First Law of Thermodynamics for Fluids	49
2	Effec	ts of Rotation and Stratification	55
	2.1	Equations of Motion in a Rotating Frame	55
	2.2	Equations of Motion in Spherical Coordinates	59
	2.3	Cartesian Approximations: The Tangent Plane	69
	2.4	The Boussinesq Approximation	70
	2.5	The Anelastic Approximation	75
	2.6	Pressure and other Vertical Coordinates	79
	2.7	Scaling for Hydrostatic Balance	83
	2.8	Geostrophic and Thermal Wind Balance	87
	2.9	Gradient Wind Balance	94
	2.10	Static Instability and the Parcel Method	97
		Appendix A: Asymptotic Derivation of the Boussinesq Equations	101
	Seoffrey I	K. vii d oceanic fluid dynamics	digitalisiert durch: IDS Basel Bern
Aunosp	nenc and		DO DASELDEIT

Contents	5
----------	---

3	Shall	ow Water Systems	105
	3.1	Dynamics of a Single Shallow Layer of Fluid	105
	3.2	Reduced Gravity Equations	110
	3.3	Multi-Layer Shallow Water Equations	112
	3.4	From Continuous Stratification to Shallow Water	114
	3.5	Geostrophic Balance and Thermal Wind	118
	3.6	Form Stress	119
	3.7	Conservation Properties of Shallow Water Systems	120
	3.8	Shallow Water Waves	123
	3.9	Geostrophic Adjustment	127
	3.10	Isentropic Coordinates	134
	3.11	Available Potential Energy	137
4	Vort	icity and Potential Vorticity	143
	4.1	Vorticity and Circulation	143
	4.2	The Vorticity Equation	145
	4.3	Vorticity and Circulation Theorems	147
	4.4	Vorticity Equation in a Rotating Frame	153
	4.5	Potential Vorticity Conservation	156
	4.6	Potential Vorticity in the Shallow Water System	162
	4.7	Potential Vorticity in Approximate, Stratified Models	163
	4.8	The Impermeability of Isentropes to Potential Vorticity	165
5	Geos	strophic Theory	171
	5.1	Geostrophic Scaling	171
	5.2	The Planetary-Geostrophic Equations	176
	5.3	The Shallow Water Quasi-Geostrophic Equations	180
	5.4	The Continuously Stratified Quasi-Geostrophic System	187
	5.5	Quasi-Geostrophy and Ertel Potential Vorticity	195
	5.6	Energetics of Quasi-Geostrophy	198
	5.7	The Ekman Layer	201
PAF	RT II	WAVES, INSTABILITIES AND TURBULENCE	213
6	Wav	e Fundamentals	215
	6.1	Fundamentals and Formalities	215
	6.2	Group Velocity	220
	6.3	Ray Theory	224
	6.4	Rossby Waves	226
	6.5	Rossby Waves in Stratified Quasi-Geostrophic Flow	231
	6.6	Energy Propagation and Reflection of Rossby Waves	234
	6.7	Group Velocity, Revisited	240
	6.8	Energy Propagation of Poincaré Waves	244
		Appendix A: The wкв Approximation for Linear Waves	247
7	Grav	vity Waves	251
	7.1	Surface Gravity Waves	251
	7.2	Shallow Water Waves on Fluid Interfaces	257
	7.3	Internal Waves in a Continuously Stratified Fluid	259
	7.4	Internal Wave Reflection	268

Con	tents		
	7.5	Internal Waves in a Fluid with Varying Stratification	271
	7.6	Internal Waves in a Rotating Frame of Reference	276
	7.7	Topographic Generation of Internal Waves	283
	7.8	Acoustic-Gravity Waves in an Ideal Gas	293
8	Linea	ar Dynamics at Low Latitudes	297
	8.1	Co-existence of Rossby and Gravity Waves	298
	8.2	Waves on the Equatorial Beta Plane	303
	8.3	Ray Tracing and Equatorial Trapping	314
	8.4	Forced-Dissipative Wavelike Flow	316
	8.5	Forced, Steady Flow: the Matsuno–Gill Problem	321
		Appendix A: Nondimensionalization and Parabolic Cylinder Functions	330
		Appendix B: Mathematical Relations in the Matsuno-Gill Problem	333
9	Baro	tropic and Baroclinic Instability	335
	9.1	Kelvin–Helmholtz Instability	335
	9.2	Instability of Parallel Shear Flow	337
	9.3	Necessary Conditions for Instability	345
	9.4	Baroclinic Instability	347
	9.5	The Eady Problem	351
	9.6	Two-Layer Baroclinic Instability	356
	9.7	A Kinematic View of Baroclinic Instability	363
	9.8	The Energetics of Linear Baroclinic Instability	367
	9.9	Beta, Shear and Stratification in a Continuous Model	369
10	Wav	es, Mean-Flows, and their Interaction	379
	10.1	Quasi-Geostrophic Wave-Mean-Flow Interaction	380
	10.2	The Eliassen–Palm Flux	383
	10.3	The Transformed Eulerian Mean	387
	10.4	The Non-Acceleration Result	394
	10.5	Influence of Eddies on the Mean-Flow in the Eady Problem	399
	10.6	Necessary Conditions for Instability	403
	10.7	Necessary Conditions for Instability: Use of Pseudoenergy	406
11	Basi	cs of Incompressible Turbulence	413
	11.1	The Fundamental Problem of Turbulence	413
	11.2	The Kolmogorov Theory	416
	11.3	Two-dimensional Turbulence	423
	11.4	Predictability of Turbulence	433
	11.5	Spectra of Passive Tracers	437
12	Geo	strophic Turbulence and Baroclinic Eddies	445
	12.1	Differential Rotation in Two-dimensional Turbulence	445
	12.2	Stratified Geostrophic Turbulence	454
	12.3	A Scaling Theory for Geostrophic Turbulence	460
	(

12.4 Phenomenology of Baroclinic Eddies in the Atmosphere and Ocean 464

ix

x	Contents
^	

13	Turb	ulent Diffusion and Eddy Transport	473
	13.1	Diffusive Transport	473
	13.2	Turbulent Diffusion	475
	13.3	Two-Particle Diffusivity	480
	13.4	Mixing Length Theory	484
	13.5	Homogenization of a Scalar that is Advected and Diffused	487
	13.6	Diffusive Fluxes and Skew Fluxes	490
	13.7	Eddy Diffusion in the Atmosphere and Ocean	493
	13.8	Thickness and Potential Vorticity Diffusion	502
PAR	r III	LARGE-SCALE ATMOSPHERIC CIRCULATION	509
14	The C	Overturning Circulation: Hadley and Ferrel Cells	511
	14.1	Basic Features of the Atmosphere	511
	14.2	A Steady Model of the Hadley Cell	516
	14.3	A Shallow Water Model of the Hadley Cell	524
	14.4	Asymmetry Around the Equator	525
	14.5	Eddy Effects on the Hadley Cell	528
	14.6	Non-local Eddy Effects and Numerical Results	532
	14.7	The Ferrel Cell	534
15	Zona	Illy-Averaged Mid-Latitude Atmospheric Circulation	539
	15.1	Surface Westerlies and the Maintenance of a Barotropic Jet	540
	15.2	Layered Models of the Mid-Latitude Circulation	549
	15.3	Eddy Fluxes and an Example of a Closed Model	562
	15.4	A Stratified Model and the Real Atmosphere	566
	15.5	Tropopause Height and the Stratification of the Troposphere	572
	15.6	A Model for both Stratification and Tropopause Height	579
		Appendix A: тем for the Primitive Equations in Spherical Coordinates	581
16	Plan	etary Waves and Zonal Asymmetries	585
	16.1	Rossby Wave Propagation in a Slowly Varying Medium	585
	16.2	Horizontal Propagation of Rossby Waves	58 8
	16.3	Critical Lines and Critical Layers	594
	16.4	A wкв Wave–Mean-Flow Problem for Rossby Waves	598
	16.5	Vertical Propagation of Rossby waves	599
	16.6	Vertical Propagation of Rossby Waves in Shear	606
	16.7	Forced and Stationary Rossby Waves	609
	16.8	Effects of Thermal Forcing	615
	16.9	Wave Propagation Using Ray Theory	621
17	The S	Stratosphere	627
	17.1	A Descriptive Overview	627
	17.2	Waves in the Stratosphere	634
	17. 3	Wave Momentum Transport and Deposition	639
	17.4	Phenomenology of the Residual Overturning Circulation	642
	17.5	Dynamics of the Residual Overturning Circulation	644
	17.6	The Quasi-Biennial Oscillation	652
	17.7	Variability and Extra-Tropical Wave-Mean-Flow Interaction	663

Content	S
---------	---

18	Wate	r Vapour and the Tropical Atmosphere	673
	18.1	A Moist Ideal Gas	673
	18.2	The Distribution of Relative Humidity	680
	18.3	Atmospheric Convection	691
	18.4	Convection in a Moist Atmosphere	695
	18.5	Radiative Equilibrium	700
	18.6	Radiative-Convective Equilibrium	703
	18.7	Vertically-Constrained Equations of Motion for Large Scales	708
	18.8	Scaling and Balanced Dynamics for Large-Scale Flow in the Tropics	711
	18.9	Scaling and Balance for Large-Scale Flow with Diabatic Sources	714
	18.10	Convectively Coupled Gravity Waves and the MJO	717
		Appendix A: Moist Thermodynamics from the Gibbs Function	720
		Appendix B: Equations of Radiative Transfer	724
		Appendix C: Analytic Approximation of Tropopause Height	725
PART	· IV	LARGE-SCALE OCEANIC CIRCULATION	729
19	Winc	I-Driven Gyres	731
	19.1	The Depth Integrated Wind-Driven Circulation	733
	19.2	Using Viscosity Instead of Drag	740
	19.3	Zonal Boundary Layers	744
	19.4	The Nonlinear Problem	745
	19.5	Inertial Solutions	747
	19.6	Topographic Effects on Western Boundary Currents	753
20	Struc	cture of the Upper Ocean	761
	20.1	Vertical Structure of the Wind-Driven Circulation	761
	20.2	A Model with Continuous Stratification	767
	20.3	Observations of Potential Vorticity	770
	20.4	The Main Thermocline	774
	20.5	Scaling and Simple Dynamics of the Main Thermocline	776
	20.6	The Internal Thermocline	779
	20.7	The Ventilated Thermocline	785
		Appendix A: Miscellaneous Relationships in a Layered Model	796
21	The l	Meridional Overturning Circulation and the ACC	801
	21.1	Sideways Convection	802
	21.2	The Maintenance of Sideways Convection	808
	21.3	Simple Box Models	813
	21.4	A Laboratory Model of the Abyssal Circulation	818
	21.5	A Model for Oceanic Abyssal Flow	821
	21.6	A Model of Deep Wind-Driven Overturning	829
	21.7	The Antarctic Circumpolar Current	836
	21.8	A Dynamical Model of the Residual Overturning Circulation	845
	21.9	A Model of the Interhemispheric Circulation	853

XJ.	ł

22	Equat	torial Circulation and El Niño	861
	22.1	Observational Preliminaries	861
	22.2	Dynamical Preliminaries	862
	22.3	A Local Model of the Equatorial Undercurrent	865
	22.4	An Ideal Fluid Model of the Equatorial Undercurrent	876
	22.5	An Introduction to El Niño and the Southern Oscillation	886
	22.6	The Walker Circulation	891
	22.7	The Oceanic Response	893
	22.8	Coupled Models and Unstable Interactions	895
	22.9	Simple Conceptual and Numerical Models of ENSO	898
	22.10	Numerical Solutions of the Shallow Water Equations	902
		Appendix A: Derivation of a Delayed-Oscillator Model	904
Refe	rences		909
Index			936

In the main text, sections that are more advanced or that contain material that is peripheral to the main narrative are marked with a black diamond, \blacklozenge . Sections that contain material that is still not settled or that describe active areas of research are marked with a dagger, \dagger .