Contents	xxiii
0010001000	/

Chapter 4	Cell	Language	173
	4.1	Communication and Languages	173
		4.1.1 Macro-, Micro-, and Holo-	
		Communications	174
		4.1.2 The Universality of Double Articulations	177
		4.1.3 Cell Language (Cellese) Defined	179
	4.2	Some Linguistic Terms for Non-linguists	180
		4.2.1 Double Articulation Extended to Triple	
		Articulation	180
		4.2.2 Rule-Governed Creativity	181
		4.2.3 Syntagmatic Relation	182
		4.2.4 Paradigmatic Relation	182
		4.2.5 Arbitrariness of Signs	182
	4.3	Application of the Information Theory to Signal	
		Transduction in Living Cells	183
	4.4	Isomorphism Between Cell and Human	
		Languages	185
	4.5	Isomorphism Between the Immune System	
		and Human Language	188
	4.6	Triple Articulation in Cell Language	189
	4.7	Decoding DNA Based on the Semiotic Lessons	
		Learned from Decoding the Rosetta Stone	190
		4.7.1 Rule-Governed Creativity	198
		4.7.2 Double Articulation also called Duality	198
		4.7.3 Maximum Information Principle	199
		4.7.4 Discreteness	199
		4.7.5 Semanticity	199
	4.8	The Biology–Linguistics Connection	199
	4.9	The Origin of Biological Information	202
	4.10	The von Neumann Questions and the	
		Conformon Theory	209
	4.11	Water as the Medium of the Cell (Cellese)	
		and Cosmic Languages (Cosmese)	212
	4.12	Cymatics and Chladni Patterns (or Figures)	215
	4.13	Water as the Molecular Sensor of Sound	
		Waves	216

	2.3	Burgin's Parametric Definition of Information	20
	2.4	Complementarity vs. Supplementarity	20
		2.4.1 The Principle of Generalized	
		Complementarity (PGC)	22
		2.4.2 The Complementarian Logic	22
	2.5	System vs. Systome	24
	2.6	Self-Organization, Dissipative Structures	
		(Dissipations), and Self-Organizing Whenever	
		and Wherever Needed (SOWAWN) Machines	27
	2.7	The Generalized Franck-Condon Principle	29
	2.8	The Atom-Cell Isomorphism	29
	2.9	The Gnergy Principle of Organization (GPO)	33
	2.10	The Principle of Irreducible Triadicity	34
	2.11	Symmetries and Symmetry Breakings	34
	2.12	The Association–Induction Hypothesis	35
	2.13	The Fourth-Phase Water	37
		2.13.1 The Ling–Pollack Water Structures	39
		2.13.2 Coherence Domains and the Benveniste-	
		Montagnier Experiments BMEs	39
		2.13.3 Systome Medicine: The Complementary	
		Union of System Medicine and	
		Environmental Medicine	41
	2.14	Cell Water as a Four-Dimensional Proton	
		Transfer Network: Water is to Cell Language	
		What Air is to Human Language	43
	2.15	The Equilibrium and Dissipative Structures	
		of Water	47
Chapter 3	The	Bhopalator	51
	3.1	Three Stages of Development in Cell Biology	51
	3.2	The Principles and Major Concepts Embedded	
		in the Bhopalator Model of the Living Cell	54
		3.2.1 The IDS-Cell Function Identity (ICFI)	
		Hypothesis	56
		3.2.2 The Information–Energy Complementarity	
		in the Living Cell	58

	3.2.3	Electromechanochemical Energy	
		Transduction	58
	3.2.4	The Wave–Particle Duality in the Living	
		Cell	67
	3.2.5	Three Categories of Enzyme Catalyzes	68
	3.2.6	The GFCP, Pre-fit Mechanisms, and Scalar	
		Enzyme Catalysis	70
	3.2.7	The GFCP and Translational Enzyme	
		Catalysis	71
	3.2.8	The GFCP and Rotary Enzyme Catalysis	75
	3.2.9	The Pre-fit Hypothesis	79
	3.2.10	Allosterism, Bohr Effect, and Wyman's	
		Pseudolinkage	83
	3.2.11	The Brownian Distance of Biopolymers	92
	3.2.12	The Principle of Microscopic Reversibility	92
	3.2.13	The Information–Energy Complementary	
		Landscape Theory of Protein Folding	94
	3.2.14	Three Classes of Molecular Structures	
		in the Living Cell	97
	3.2.15	Five Classes of Factors Affecting the	
		Behavior of the Living Cell	99
	3.2.16	An Atom-Cell Comparison Based on	
		Aristotle's Four Causes Doctrine	101
	3.2.17	The Cell Force: A Comparison with the	
		Gravitational Force	102
	3.2.18	The Cell as the Atom of Semiosis	103
	3.2.19	The Triadic Structures of the Living Cell	104
	3.2.20	The Piscatawaytor: A Model of the Human	
		Body Viewed as a Self-Organizing System	
		of Bhopalators	105
	3.2.21	The Human Body-Internet Metaphor	
		(HIM)	107
3.3	The M	itochondrion — The Energy Source of the	
	Living	Cell	111
	3.3.1	The Conformon Model of Oxidative	
		Phosphorylation: Kinematic vs. Dynamic	
		Aspects	115

	3.3.2	Conformon Production, Transfer, and	
		Utilization	119
	3.3.3	Deconstructing the Chemiosmotic Model	122
	3.3.4	A Comparison Between the Chemiosmotic	
		and Conformon Models of Oxidative	
		Phosphorylation	126
	3.3.5	The Rochester-Noji-Helsinki (RoNoH)	
		Model of Oxidative Phosphorylation	131
	3.3.6	Mitchel vs. Williams Protons	136
	3.3.7	Active vs. Passive Conformational	
		Changes of Biopolymers	139
	3.3.8	Active vs. Passive ATP Syntheses	140
	3.3.9	Cytochrome c Oxidase an Electron-	
		Driven Proton Sink and Pump	141
	3.3.10	Proton-Transfer Chains/Complexes as the	
		Fourth-Phase Water Structures of Ling	
		and Pollack	149
3.4	The Co	onformon	150
	3.4.1	Direct Experimental Evidence for	
		Conformons or Conformational Waves	151
	3.4.2	DNA Supercoils, the White Formula,	
		and Conformons	151
	3.4.3	Stress-Induced Duplex Destabilizations as	
		Conformons	157
	3.4.4	Virtual and Real Conformons:	
		Mechanisms of Conformon Generation	
		Based on the GFCP	158
	3.4.5	The Quantization of Conformational	
		Energies of Biopolymers	159
	3.4.6	The Conformon Hypothesis of Energy-	
		Coupled Processes in the Living Cell	160
	3.4.7	The Conformon Model of Mechanical	
		Force Generation from Chemical	
		Reactions	162
	3.4.8	The Conformon Model of Muscle	
		Contraction	164

Contents	xxiii
0010001000	/

Chapter 4	Cell	Language	173
	4.1	Communication and Languages	173
		4.1.1 Macro-, Micro-, and Holo-	
		Communications	174
		4.1.2 The Universality of Double Articulations	177
		4.1.3 Cell Language (Cellese) Defined	179
	4.2	Some Linguistic Terms for Non-linguists	180
		4.2.1 Double Articulation Extended to Triple	
		Articulation	180
		4.2.2 Rule-Governed Creativity	181
		4.2.3 Syntagmatic Relation	182
		4.2.4 Paradigmatic Relation	182
		4.2.5 Arbitrariness of Signs	182
	4.3	Application of the Information Theory to Signal	
		Transduction in Living Cells	183
	4.4	Isomorphism Between Cell and Human	
		Languages	185
	4.5	Isomorphism Between the Immune System	
		and Human Language	188
	4.6	Triple Articulation in Cell Language	189
	4.7	Decoding DNA Based on the Semiotic Lessons	
		Learned from Decoding the Rosetta Stone	190
		4.7.1 Rule-Governed Creativity	198
		4.7.2 Double Articulation also called Duality	198
		4.7.3 Maximum Information Principle	199
		4.7.4 Discreteness	199
		4.7.5 Semanticity	199
	4.8	The Biology–Linguistics Connection	199
	4.9	The Origin of Biological Information	202
	4.10	The von Neumann Questions and the	
		Conformon Theory	209
	4.11	Water as the Medium of the Cell (Cellese)	
		and Cosmic Languages (Cosmese)	212
	4.12	Cymatics and Chladni Patterns (or Figures)	215
	4.13	Water as the Molecular Sensor of Sound	
		Waves	216

	4.14	Sonocytology or "Cytocymatics"	219
	4.15	Water Standing Waves (Aquaresonances) as the	
		Possible Cause of the Origin of Life	221
	4.16	Decoding CymaGlyphs May Be Akin to	
		Decoding Hieroglyphs	221
	4.17	The Water Thesis: Water Can Represent,	
		Compute, and Communicate	222
	4.18	Cosmic Language (Cosmese) as the Irreducible	
		Triad of Wave Language (CymaGlyphs),	
		Cell Language (e.g., RNA glyphs), and Human	
		Language (e.g., <i>Hieroglyphs</i>)	225
	4.19	CymaScope as an Experimental Tool	
		for Connecting Mind and Matter	227
	4.20	Life Supervenes on Water	227
	4.21	The Dissipative-to-Equilibrium Reversibility	
		(DER) Postulate of Aquastructures	231
	4.22	Exosomes as Extracellular Text Messages That	
		May Be Deciphered by Digital CymaScopy	234
Chapter 5	Mate	rix Mathematics of Genetics	230
Chapter 5	Iviau	Tx Mathematics of Genetics	239
	5.1	The Petoukhov Coincidence	239
	5.2	The Mathematical Similarity between the Genetic	
		Code and the I-Ching Hexagrammatology	244
	5.3	The Molecular Language (Moleculese)	248
Chapter 6	Rios	amiotics	255
Chapter 0	D105	emotes	233
	6.1	Concepts, Laws, and Principles	255
		6.1.1 Molecular Machine	257
		6.1.2 Dissipative Structures	257
		6.1.3 Intracellular Dissipative Structures	257
		6.1.4 The Law of Requisite Variety	258
		6.1.5 Cell Language Theory	259
		6.1.6 Biocybernetic Models of Living Systems	
		and Processes: "Atorology"	259

	6.2	A Comparison between Physics, Biology,	
		and Philosophy	260
	6.3	The Peircean Theory of Signs	261
		6.3.1 Peircean Definition of Signs	261
		6.3.2 Peircean Categories: Firstness,	
		Secondness, and Thirdness	264
	6.4	Macrosemiotics vs. Microsemiotics	264
	6.5	Peircean Signs as Gnergons	266
	6.6	The Quark Model of the Peircean Sign [279]	269
		6.6.1 The Nine Types of Signs	270
		6.6.2 The 10 Classes of Signs	272
		6.6.3 Derivation of the 10 Classes of Signs from	
		Nine Types of Signs Based on the Analogy	
		between e-Signs and Quarks in Elementary	
		Particle Physics	274
		6.6.4 Derivation of "Nilsign" and Its Associated	
		Category Called "Zeroness" Based on the	
		Quark Model of the Peircean Sign	276
		6.6.5 The Neo-Semiotics and the Possible	
		Meaning of Zeroness	278
	6.7	Application of the Concept of Signs to	
		Molecular Biology: Microsemiotics	282
	6.8	Real vs. Virtual Semiosis	283
	6.9	Division of Sign Processes Based on the	
		Nature and Size of Sign Processors	284
	6.10	Peirce's Metaphysics as the Basis for Unifying	
		Sciences	286
Chapter 7	App	lications of the Cell Language Theory to	
	Bion	nedical Sciences	289
	7 1	The Mood for a New Derediam in Diamodical	
	7.1	The Need for a New Paradigin in Biomedical	200
		Sciences	290
		of Drug Davelopment	201
		of Drug Development	291
		1.1.2 Precision Medicine	29 I

1.2	Ribonoscopy	293
	7.2.1 DNA Microarrays	293
	7.2.2 The Microarray Data Interpretation	
	Problem	296
	7.2.3 Ribonoscopy is to Cell Biology What	
	Spectroscopy is to Atomic Physics	301
7.3	Analysis of Human Breast Cancer Microarray	
	Data	305
	7.3.1 The Mechanism Circle-Based Analysis	306
	7.3.2 PDE-Based Method for Identifying	
	Patient-Specific Breast Cancer Genes	315
	7.3.3 Can PDE Be to Cell Biology What PRE is	
	to Atomic Physics?	326
	7.3.4 The PDE-Based Approach to Discovering	
	Dissipative Structure (or Dissipaton)-	
	Targeting Drugs	328
	7.3.5 Conserved Transcriptional Response to	
	Cancer (CTRC): The First Law of	
	Transcriptomics	330
Chapter 8 The U	Transcriptomics Universality of the Planckian Distribution	330
Chapter 8 The U Equa	Transcriptomics Universality of the Planckian Distribution tion	330333
Chapter 8 The U Equa 8 1	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian	330 333
Chapter 8 The U Equa 8.1	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation	330 333 333
Chapter 8 The U Equa 8.1 8 2	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis	330333333336
Chapter 8 The U Equa 8.1 8.2	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data	 330 333 333 336 336
Chapter 8 The U Equa 8.1 8.2	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy	330333333336336
Chapter 8 The U Equa 8.1 8.2	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes	 330 333 333 336 336 336 338
Chapter 8 The U Equa 8.1 8.2	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes 8.2.3 RASER Model of Enzyme Catalysis	 330 333 333 336 336 338 339
Chapter 8 The U Equa 8.1 8.2	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes 8.2.3 RASER Model of Enzyme Catalysis Examples of Long-Tailed Histograms Fitting	 330 333 333 336 336 336 338 339
Chapter 8 The U Equa 8.1 8.2 8.3	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes 8.2.3 RASER Model of Enzyme Catalysis Examples of Long-Tailed Histograms Fitting PDE	 330 333 333 336 336 336 338 339 341
Chapter 8 The U Equa 8.1 8.2 8.3	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes 8.2.3 RASER Model of Enzyme Catalysis Examples of Long-Tailed Histograms Fitting PDE 8.3.1 Atomic Physics (Figure 8.6(a))	 330 333 333 336 336 336 336 338 339 341 347
Chapter 8 The U Equa 8.1 8.2 8.3	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes 8.2.3 RASER Model of Enzyme Catalysis Examples of Long-Tailed Histograms Fitting PDE 8.3.1 Atomic Physics (Figure 8.6(a)) 8.3.2 Protein Folding (Figure 8.6(b))	 330 333 333 336 336 336 338 339 341 347 347 347
Chapter 8 The U Equa 8.1 8.2 8.3	Transcriptomics Universality of the Planckian Distribution tion Blackbody Radiation and the Planckian Distribution Equation Single-Molecule Enzyme Catalysis 8.2.1 Observation and Data 8.2.2 Explanation: Quantization of Energy Levels in Enzymes 8.2.3 RASER Model of Enzyme Catalysis Examples of Long-Tailed Histograms Fitting PDE 8.3.1 Atomic Physics (Figure 8.6(a)) 8.3.2 Protein Folding (Figure 8.6(b)) 8.3.3 Single-Molecule Enzyme Kinetics of	 330 333 333 336 336 336 336 336 337 341 347 347

8.3.4	mRNA Levels in Budding Yeast	
	(Figure 8.6(d))	349
8.3.5	RNA Levels in Human Breast Tissues	
	(Figure 8.6(e))	350
8.3.6	Human T-cell Receptor Variable Region	
	Sequence Diversity (Figure 8.6(f))	350
8.3.7	7-Mer Frequency Distribution in P. abyssi	
	(Figure 8.6(g))	351
8.3.8	Codon Usage Profile in the Human	
	Genome (Figure 8.6(h))	352
8.3.9	Protein-Length Frequency Distribution in	
	H. influenza (Figure 8.6(i))	352
8.3.10	Stress-Induced Alterations in the	
	Neuroarchitecture	
	of the Mouse Brain (Figure 8.6(j))	353
8.3.11	Impulse-Induced Electrocorticogram	
	(ECoG) Response of the Rabbit Olfactory	
	System (Figure 8.6(k))	353
8.3.12	fMRI Signals from the Human Brain	
	before and after Psilocybin (Figure 8.6(l))	354
8.3.13	Sentence-Length Frequency Distributions	
	in Private Letters (Figure 8.6(m))	354
8.3.14	Word-Length Frequency Distributions in	
	English Text (Figure 8.6(n))	355
8.3.15	Word-Length Frequency Distribution in	
	Kerry's Speech (Figure 8.6(o))	355
8.3.16	The Pitch Histogram of Sylvia Plath's	
	Reading of Her Poem (Figure 8.6(p))	355
8.3.17	Decision-Time Histograms	
	(Figure $8.6(q)$)	356
8.3.18	The 1996 and 2013 US Annual Income	
	Distributions (Figures 8.6(r) and 8.6(s))	358
8.3.19	Polarized Cosmological Microwave	
	Background (CMB) Radiation	
	(Figure $8.6(t)$)	359

	8.4	The Universality of the PDE	359
		8.4.1 Planckian Processes as Selected Gaussian	
		Processes	360
		8.4.2 The Wave–Particle Duality in Biology	
		and Medicine	361
	8.5	The Planckian Information (I_p) as a New	
		Measure of Organization	361
		8.5.1 The Definition of Planckian	
		Information, $I_{\rm p}$	362
		8.5.2 The First Law of Informatics: Information	
		Can but Entropy Cannot Be Negative	363
		8.5.3 The Brain Is both Entropic and	
		Informational	366
	8.6	Possible Relations among Planckian	
		Information, Quanta, and Entropy	368
	8.7	PDE-based CymaScopy (PCS) as a Novel	
		Experimental	
		Tool for Infostatistical Mechanics	371
Chapter 9	The	Universality of the Irreducible Triadic	
	Rela	ition	377
	9.1	The Peircean Sign as the Origin of the	
		Irreducible Triadic Relation	377
	9.2	Peirce's Simple Concepts Applicable to Every	
		Subject	379
	9.3	ITR in Peirce's Hypostatic Abstraction	383
	9.4	Examples of ITRs	384
		9.4.1 The Golden Ratio	384
		9.4.2 The Fibonacci Numbers	386
		9.4.3 Belousov-Zhabotinsky (BZ) Reaction	
		(or the Brusselator)	389
		9.4.4 Enzyme Catalysis	390
		9.4.5 Gene Expression	391
		9.4.6 Practopoiesis	391
		9.4.7 ITR in Mathematics, Philosophy,	
		Semiotics, and Religions	391

Chapter 10	The F	Philosophical Implications of the Cell	
	Language Theory		
	10.1	Complementarism	395
		10.1.1 Complementarity Between	
		Complementarism and Merleau-Ponty's	
		Flesh Ontology	396
		10.1.2 Naturalized Phenomenology	397
	10.2	Complementarism and Semiotics	398
	10.3	Signs, Thoughts, and "Thoughtons"	401
	10.4	The "New Jersey Theory of Mind"	
		(NJTM)	404
	10.5	A Theory of Consciousness	408
	10.6	The Triadic Architectonics of Human	
		Knowledge	410
	10.7	On the Possible Relation Between Quantum	
		Mechanics and Semiotics	411
	10.8	The Hertz-Rosen-Pattee (HRP) Model	
		of Reality	416
	10.9	The Signless and the Dao as the Source	
		of Everything Including Signs	418
	10.10	Cybersemiotics	421
	10.11	Practopoiesis	425
	10.12	A Theory of the Origin of Information	
		Based on Peircean Metaphysics	429
	10.13	Information–Entropy Relation	432
	10.14	A "Philosophical Table" for Classifying	
		Information, Entropy, and Energy	434
	10.15	The Information–Energy–Entropy Relation:	
		The "NewJerseyator"	437
	10.16	The First Law of Informatics: Information	
		Can but Entropy Cannot Be Negative	440
	10.17	Semiotics and Information Theory	441
	10.18	The Model of the Universe	443
		10.18.1 The Shillongator Model of	
		the Universe	444
		10.18.2 Semiotics of the Universe	449

	10.18.3 Iconic Model of Reality	454
	10.18.4 The Self-Knowing Universe and the	
	Anthropic Cosmological Principle	457
	10.19 The Universe as a Self-Organizing Musical	
	Instrument (USOMI)	460
	10.20 Semiotics as the Theory of Everything (TOE)	463
	10.21 Triadic Monism	469
	10.22 A Model of Consciousness	475
Chapter 11	Conclusions	481
References		487
Appendix I		523
Appendix II		553
Index		559