Contents

Lis	st of	Figures	xi
Lis	st of	Tables	kiv
Pr	eface	e to the first edition	cvi
Pr	eface	e to the second edition xv	viii
Pr	eface	e to the third edition	xx
1	Intr	oduction	1
	1.1	Epistemology	1
	1.2	Paradigms ruling analysis	4
2	Pat	terns in vegetation ecology	7
	2.1	Pattern recognition	7
	2.2	Multivariate pattern analysis	11
	2.3	Sampling for pattern recognition	13
		2.3.1 Getting a sample	13
		2.3.2 Organizing the data	15
	2.4	Pattern recognition in \mathcal{R}	18
3	Tra	nsformation	23
	3.1	Data types	23
	3.2	Scalar transformation and the species enigma	27
	3.3	Vector transformation	29
	3.4	Example: Transformation of plant cover data	33
	3.5	Which transformation?	35
4	Mu	ltivariate comparison	37
	4.1	Resemblance in multivariate space	37
	4.2	Geometric approach	38
	4.3	Contingency measures	43
	4.4	Product moments	45

	4.5	The resemblance matrix 49
	4.6	Assessing the quality of classifications
	4.7	Which resemblance function? 52
5	Clas	sification 54
	5.1	The legacy of vegetation classification 54
	5.2	Group structures
	5.3	Agglomerative clustering
		5.3.1 Linkage clustering 58
		5.3.2 Average linkage clustering revisited 60
		5.3.3 Minimum-variance clustering 62
	5.4	Divisive clustering
	5.5	Forming groups
	5.6	Silhouette plot and fuzzy representation
	5.7	Revising classifications
	5.8	Which classification method?
6	Ord	ination 79
	6.1	Why ordination?
	6.2	Principal component analysis
		6.2.1 Operational steps
		6.2.2 Interpretation by example
	6.3	Principal coordinates analysis
	6.4	Correspondence analysis
	6.5	Heuristic ordination
		6.5.1 The horseshoe or arch effect
		6.5.2 Flexible shortest path adjustment
		6.5.3 Nonmetric multidimensional scaling 101
		6.5.4 Detrended correspondence analysis
	6.6	How to interpret ordinations 104
	6.7	Ranking by orthogonal components
		6.7.1 RANK method
		6.7.2 A sampling design based on RANK (example) 112
	6.8	Which ordination method? 115
7	Eco	logical patterns 119
	7.1	Pattern and ecological response
	7.2	Evaluating groups
		7.2.1 Variance testing
		7.2.2 Variance ranking
		7.2.3 Ranking by indicator values
		7.2.4 Analysis of concentration
	7.3	Correlating spaces
		7.3.1 The Mantel test

		7.3.2 Corre	elograms	•		•	•	•	135
		7.3.3 More	trends: 'Schlaenggli' data revisited						138
	7.4	Constrained	$ordination \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$						142
	7.5	Nonparamet	ric multiple analysis of variance	•					148
		7.5.1 Meth	od and example	•		•		•	148
		7.5.2 Data	transformation revisited \ldots \ldots \ldots						152
		7.5.3 Clust	ering revisited	•		•	•	•	153
	7.6	Synoptic veg	etation tables	•					154
		7.6.1 The	aim of ordering tables	•	• •	•	•	•	154
		7.6.2 Steps	involved in sorting tables	•		•	•		155
		7.6.3 Exan	ple: ordering Ellenberg's data	•	• •	•	·	•	159
8	Trai	s and indi	cators						162
	8.1	Vegetation b	eyond the species concept			•			162
	8.2	Analytical fi	amework						164
	8.3	Matrix oper	ations in a nutshell					•	166
	8.4	Schlaenggli	lata example	•		•			171
		8.4.1 Prep	aring data matrices					•	171
		8.4.2 Deriv	ring and projecting new data spaces						174
		8.4.3 Meas	uring convergence			•			177
	8.5	Rebuilding o	ommunity ecology?	• 1		•	٠	·	180
9	Stat	c predictiv	e modelling						183
	9.1	Predictive of	explanatory?	•					183
	9.2	Evaluating e	nvironmental predictors						184
	9.3	Generalized	linear models						187
	9.4	Generalized	additive models					•	192
	9.5	Classification	and regression trees						194
	9.6	Testing and	building scenarios	•	•••	•	٠	•	197
	9.7	Modelling ve	egetation types						200
	9.8	Expected we	tland vegetation (example)	•		•	•	•	204
10	Veg	tation cha	nge in time					ł	211
	10.1	Coping with	time						211
	10.2	Temporal au	tocorrelation						212
	10.3	Detecting tr	end	•					215
	10.4	Rate of char	ge						217
	10.5	Early succes	sion: Vraconnaz revisited						219
	10.6	Markov mod	lels				•		222
		10.6.1 Meth	od an example					•	222
		10.6.2 Limi	ations and practice			,		•	228
	10.7	Space-for-tin	ne substitution						229
		10.7.1 Princ	tiple and method						229
		10.7.2 Swiss	National Park succession (example) .						232

	10.8	Dynamics in pollen diagrams	236
11	Dyn	amic modelling	241
	11.1	Principles of systems	241
	11.2	Simulating exponential growth	243
	11.3	Logistic growth	244
	11.4	The Lotka–Volterra model	247
	11.5	Simulating space processes	251
	11.6	Processes in the Swiss National Park	252
	+1.0	11.6.1 The temporal model	252
		11.6.2 The spatial model	256
1 2	Rev	ising classifications	261
	12.1	Bevond statistical analysis	261
	12.2	Wetland data	263
	12.3	Preprocessing data	264
	12.0	12.3.1 Suppressing outliers	264
		12.3.2 Selecting groups	265
	12.4	Evaluating classification revisions	267
	12.5	Carry-over nomenclature?	270
	12.6	Step by step in R	273
	12.7	Revising classification - or data?	276
13	Swi	ss forests: a case study	278
	13.1	Aim of the study	278
	13.2	Structure of the data set	279
	13.3	Selected questions	281
		13.3.1 Is the similarity pattern discrete or continuous?	281
		13.3.2 Is there a scale effect from plot size?	286
		13.3.3 Which factors reflect vegetation pattern?	289
		13.3.4 Is tree species distribution man-made?	293
		13.3.5 Is the tree species pattern expected to change?	299
	13.4	Conclusions	300
14	Bac	k to the roots?	302
Bi	bliog	raphy	307
Aı	open	dix A: Functions in package dave	325
Aı	open	dix B: Data sets used	326
In	dex	:	327

List of Figures

1.1	Principles of the filter model	6
2.1	Picture of a flower of a water lily (Nymphaea alba)	8
2.2	Vegetation mapping as a method for assessing a pattern	9
2.3	Ordination of a typical horseshoe-shaped vegetation gradient	10
2.4	Spatial vegetation patterns	11
2.5	Impacts causing patterns	12
2.6	The elements of sampling design	15
2.7	Sampling plan of the 'Schlaenggli' data set	16
3.1	Scalar transformation of population size	28
3.2	Scalar transformations of the coordinates of a graph	29
3.3	Overlap of two species with Gaussian response	30
4.1	Presentation of data in the Euclidean space	39
4.2	Three ways of measuring distance	39
4.3	The correlation of vector j with vector k	46
4.4	Similarities within and between the forest types of Switzerland	51
5.1	Two-dimensional group structures	56
5.2	A dendrogram from agglomerative hierarchical clustering \ldots	58
5.3	Comparing different methods of linkage clustering	59
5.4	Variance within and between groups	62
5.5	Cutting dendrograms derived by different methods	67
5.6	Silhouette plot example	69
5.7	Silhouette plot of four clustering solutions	70
5.8	Comparison of classification methods	76
6.1	Three-dimensional representation of similarity relationships $\ .$	80
6.2	Operations in PCA ordination	82
6.3	Interpretation of PCA results using real world data	85
6.4	Projection of five-dimensional PCA ordination	88
6.5	PCOA ordination using the 'Schlaenggli' data set	91
66	PCOA ordinations with six different resemblance measures	03

6.7	Comparison of CA and PCA	96
6.8	Origin of the arch effect	98
6.9	Comparing PCOA and FSPA	100
6.10	Comparison of PCOA and NMDS	103
6.11	Comparison of CA and DCA.	104
6.12	Interpretations of CA.	105
6.13	Surface fitting to interpret ordinations	106
6.14	Relevés chosen by RANK for permanent investigation	113
6.15	Ordinations of the sveg vegetation data set	116
7.1	Distinctness of group structure	121
7.2	Ordination of group structure in data set 'nveg'	132
7.3	Biplot and correlogram of 10 pH measurements $\ldots \ldots \ldots$	137
7.4	Projecting distances in different directions	139
7.5	Evaluating the direction of the main floristic gradient \ldots .	139
7.6	Correlograms of site factors with vegetation $\ldots \ldots \ldots$	141
7.7	Comparison of RDA and CCA	146
7.8	Using distance matrices in NP-MANOVA	150
7.9	$Performance \ of \ clustering \ methods \ \ . \ . \ . \ . \ . \ . \ . \ . \ . $	154
7.10	Graphical display of vegetation tables	158
7.11	Structuring the meadow data set of Ellenberg	161
8.1	Processing species-, traits- and indicator-based data	165
8.2	Histograms of 20 site factors in ssit	172
8.3	Species-, traits-, indicator- and site-based data as ordinations	174
8.4	Convergence of four spaces	178
8.5	PCA ordinations with trend surfaces $\ldots \ldots \ldots \ldots$	181
9.1	Pairwise plot of selected site variables	186
9.2	Linear and logistic regression of pH and Sphagnum recurvum	188
9.3	Occurrence of Spagnum recurvum and prediction by GLM	191
9.4	Prediction of Spagnum recurvum by GAM	193
9.5	Regression tree to predict Spagnum recurvum by pH	194
9.6	Predicting Spagnum recurvum by classification tree	195
9.7	Testing a model using independent variables	197
9.8	Scenarios for predicting Spagnum recurvum occurrence	199
9.9	Multivariate logistic regression	201
9.10	Simulated wetland vegetation	206
9.11	Occurrence probability of three species	208
9.1 2	Steps of computation in multinomial logistic regression $% \left({{{\bf{x}}_{i}}} \right)$	209
10.1	Type of environmental study needed to assess change	212
10.2	Temporal arrangement of measurements (pH)	213
10.3	Ordination of data from plots in the Swiss National Park \ldots	216
10.4	Measuring rate of change in time series of multi-state systems	218

10.5 Rate of change in plot Tr6, Swiss National Park	218
10.6 Ordination of data from bare peat plots of Vraconnaz 2	220
10.7 Boxplots of changes in vegetation in plots with bare peat 2	220
10.8 A Markov model of the Lippe et al. (1985) data set 2	226
10.9 PCA ordination of the Lippe succession data	227
10.10 Markov model of plot 15 of the Vraconnaz data	229
10.11 The principle of space-for-time substitution	230
10.12 The similarity of time series	231
10.13 Pinus mugo on a former pasture in the Swiss National Park	233
10.14 Minimum spanning tree (Swiss National Park) 2	234
10.15 Order of 59 time series from the Swiss National Park 2	235
10.16 Succession in pastures of the Swiss National Park 2	235
10.17 Tree species in a pollen diagram (Lotter 1999)	237
10.18 Velocity profile of the Soppensee pollen diagram 2	237
10.19 Time trajectory of the Soppensee pollen diagram 2	238
10.20 Velocity profiles of quantitative and qualitative content	240
11.1 Attempt to get a dynamic model under control (Wildi 1976).	242
11.2 Numerical integration of the exponential growth equation 2	244
11.3 Simulating logistic growth	246
11.4 Abundance of lynx and snowshoe hare	247
11.5 Response of the Lotka–Volterra model	249
11.6 The mechanism of spatial exchange	252
11.7 Overgrowth of a plot by a new guild	253
11.8 Temporal succession in the Swiss National Park	255
11.9 Spatial design of SNP model	257
11.10 Spatial simulation of succession, Alp Stabelchod 2	258
12.1 Frequency distribution of nearest-neighbour distances of relevés?	264
12.2 Group sizes in the sample of wetland data	266
12.3 Comparison of the full versus the reduced wetland sample 2	266
12.4 F-values in environmental models based on classifications	269
12.5 Response of three classifications to elevation	270
12.6 Summary tables of three alternative classifications 2	271
13.1 Two ordinations of the Swiss forest data set	282
13.2 Vegetation map of Swiss forests (eight groups)	283
13.3 Boxplot of Swiss forest types (eight groups)	285
13.4 The effect of different plot size on similarity pattern 2	289
13.5 Vegetation probability map (eight groups).	291
13.6 Observed and potential distribution of four tree species 2	295
13.7 Ordination of forest stands. Four selected tree species marked 2	296
13.8 Ecograms of forest stands. Four selected tree species marked	297
13.9 Tree and herb layers of three species in ecological space 2	299

List of Tables

2.1	Terms used in sampling design 14
2.2	Organization of vegetation and site data in \mathcal{R}
3.1	Selected data types used for plant description
3.2	Effects of different vector transformations
3.3	Numerical examples of vector transformation
3.4	Transformation of cover-abundance values in phytosociology . 34
4.1	Notations in contingency tables
4.2	Resemblance measures using the notations in Table 4.1 44
4.3	Product moments
4.4	The average distance as a measure for homogeneity 49
5.1	Properties of four average linkage clustering methods 61
5.2	Reassigning plots to splinter groups in divisive clustering 65
5.3	Data set illustrating the k-means algorithm. \ldots 74
6.1	Data set and results illustrating the RANK algorithm 109
6.2	Ranking relevés of the 'Schlaenggli' data set
6.3	Ranking species of the 'Schlaenggli' data set
7.1	Synoptic table of nveg and snit 123
7.2	Variance ranking of species
7.3	Variance ranking of site factors
7.4	Ranking of species by indicator values
7.5	Mantel correlogram
7.6	Mantel test of the site factors
7.7	Storage location of parameters from functions rda() and cca()147
7.8	Evaluating data transformation distance function 152
7.9	Steps involved in sorting synoptic tables
7.10	Frequency table of structured synoptic vegetation table 159
8.1	Variable definitions (traits, indicators, site factors) 173
8.2	Mean values of site factors for plant traits
8.3	Mean values of indicator values for plant traits

9.1 9.2	Input and output data of multivariate logistic regression Group means and standard deviations of pH and average wa-	201
	ter level	206
10.1	Temporal autocorrelation in a time series $\ldots \ldots \ldots \ldots$	213
10.2	Markov process, measured and modelled data	223
11.1	The effect of time step length in numerical integration \ldots .	244
11.2	Parameters of the Lotka–Volterra model	248
11.3	Initial values in the temporal model SNP	254
11.4	Six discrete vegetation states used as initial conditions	257
12.1	Site factors in data frame wetsit	264
12.2	Evaluation of classifications	268
12.3	Jancey's ranking applied to three classifications	272
13.1	Data sets used in Chapter 13	281
13.2	Composition of eight vegetation types	282
13.3	Frequencies of tree species in data sets of different scale	286
13.4	F-values of site factors based on eight forest vegetation types.	290
13.5	Multinomial models with different relevé plot size	293
13.6	Tree species frequencies in different vegetation layers	298