CAUSALITY

Models, Reasoning, and Inference Second Edition

Judea Pearl

University of California, Los Angeles

Preface to the First Edition				page xv		
Prefe	ace to	the Seco	ond Edition	XiX		
1	Inte	Introduction to Probabilities, Graphs, and Causal Models				
	1.1	Introdu	uction to Probability Theory	1		
		1.1.1	Why Probabilities?	1		
		1.1.2	Basic Concepts in Probability Theory	2		
		1.1.3	Combining Predictive and Diagnostic Supports	6		
		1.1.4	Random Variables and Expectations	8		
		1.1.5	Conditional Independence and Graphoids	11		
	1.2	Graph	s and Probabilities	12		
		1.2.1	Graphical Notation and Terminology	12		
		1.2.2	Bayesian Networks	13		
		1.2.3	The <i>d</i> -Separation Criterion	16		
		1.2.4	Inference with Bayesian Networks	20		
	1.3	Causal	Bayesian Networks	21		
		1.3.1	Causal Networks as Oracles for Interventions	22		
		1.3.2	Causal Relationships and Their Stability	24		
	1.4	Function	onal Causal Models	26		
		1.4.1	Structural Equations	27		
		1.4.2	Probabilistic Predictions in Causal Models	30		
		1.4.3	Interventions and Causal Effects in Functional Models	32		
		1.4.4	Counterfactuals in Functional Models	33		
	1.5	Causal	l versus Statistical Terminology	38		
2	ΑT	heory o	of Inferred Causation	41		
	2.1	Introdu	uction – The Basic Intuitions	42		
	2.2	The Ca	ausal Discovery Framework	43		
	2.3	Model	Preference (Occam's Razor)	45		
	2.4	Stable	Distributions	48		
	2.5	Recov	ering DAG Structures	49		
	2.6	Recov	ering Latent Structures	51		

vii

	2.7	Local	Criteria for Inferring Causal Relations	54
	2.8	Nontemporal Causation and Statistical Time		
	2.9	Concl	lusions	59
		2.9.1	On Minimality, Markov, and Stability	61
3	Cau	ısal Di	agrams and the Identification of Causal Effects	65
	3.1	Introd	luction	66
	3.2	Interv	rention in Markovian Models	68
		3.2.1	Graphs as Models of Interventions	68
		3.2.2	Interventions as Variables	70
		3.2.3	Computing the Effect of Interventions	72
		3.2.4	Identification of Causal Quantities	77
	3.3	Contr	olling Confounding Bias	78
		3.3.1	The Back-Door Criterion	79
		3.3.2	The Front-Door Criterion	81
		3.3.3	Example: Smoking and the Genotype Theory	83
	3.4	A Cal	culus of Intervention	85
		3.4.1	Preliminary Notation	85
		3.4.2	Inference Rules	85
		3.4.3	Symbolic Derivation of Causal Effects: An Example	86
		3.4.4	Causal Inference by Surrogate Experiments	88
	3.5	Graph	nical Tests of Identifiability	89
		3.5.1	Identifying Models	91
		3.5.2	Nonidentifying Models	93
	3.6	Discu	ission	94
		3.6.1	Qualifications and Extensions	94
		3.6.2	Diagrams as a Mathematical Language	96
		3.6.3	Translation from Graphs to Potential Outcomes	98
		3.6.4	Relations to Robins's G-Estimation	102
4	Act	ctions, Plans, and Direct Effects		
	4.1	Introd	luction	108
		4.1.1	Actions, Acts, and Probabilities	108
		4.1.2	Actions in Decision Analysis	110
		4.1.3	Actions and Counterfactuals	112
	4.2	Condi	itional Actions and Stochastic Policies	113
	4.3	When	Is the Effect of an Action Identifiable?	114
		4.3.1	Graphical Conditions for Identification	114
		4.3.2	Remarks on Efficiency	116
		4.3.3	Deriving a Closed-Form Expression	
			for Control Queries	117
		4.3.4	Summary	118
	4.4	The Id	dentification of Dynamic Plans	118
		4.4.1	Motivation	118
		4.4.2	Plan Identification: Notation and Assumptions	120

		4.4.3 Plan Identification: The Sequential Back-Door Criterion	121			
		4.4.4 Plan Identification: A Procedure	124			
	4.5	Direct and Indirect Effects	126			
		4.5.1 Direct versus Total Effects	126			
		4.5.2 Direct Effects, Definition, and Identification	127			
		4.5.3 Example: Sex Discrimination in College Admission	128			
		4.5.4 Natural Direct Effects	130			
		4.5.5 Indirect Effects and the Mediation Formula	132			
5	Cau	sality and Structural Models in Social Science and Economics	133			
	5.1	Introduction	134			
		5.1.1 Causality in Search of a Language	134			
		5.1.2 SEM: How Its Meaning Became Obscured	135			
		5.1.3 Graphs as a Mathematical Language	138			
	5.2	Graphs and Model Testing	140			
		5.2.1 The Testable Implications of Structural Models	140			
		5.2.2 Testing the Testable	144			
		5.2.3 Model Equivalence	145			
	5.3	Graphs and Identifiability	149			
		5.3.1 Parameter Identification in Linear Models	149			
		5.3.2 Comparison to Nonparametric Identification	154			
		5.3.3 Causal Effects: The Interventional Interpretation of				
		Structural Equation Models	157			
	5.4	Some Conceptual Underpinnings	159			
		5.4.1 What Do Structural Parameters Really Mean?	159			
		5.4.2 Interpretation of Effect Decomposition	163			
		5.4.3 Exogeneity, Superexogeneity, and Other Frills	165			
	5.5	Conclusion	170			
	5.6	Postscript for the Second Edition	171			
		5.6.1 An Econometric Awakening?	1/1			
		5.6.2 Identification in Linear Models	1/1			
		5.6.3 Robustness of Causal Claims	172			
6	Sim	mpson's Paradox, Confounding, and Collapsibility				
	6.1	Simpson's Paradox: An Anatomy	174			
		6.1.1 A fale of a Non-Paradox	174			
		6.1.2 A fale of Statistical Agony	175			
		6.1.4 A Daraday Baselyad (On What Kind of Machine Ia Mar ²)	1//			
	60	0.1.4 A Paradox Resolved (Or: what Kind of Machine Is Man?)	180			
	0.2	Think There Is and Why They Are Almost Right	182			
		6.2.1 Introduction	182			
		6.2.2 Causal and Associational Definitions	184			
	63	How the Associational Criterion Fails	185			
	0.5	6.3.1 Failing Sufficiency via Marginality	185			
		6.3.2 Failing Sufficiency via Closed-World Assumptions	186			
		o.o.a ranne oanolonoy na closed nona rissumptions	100			

		6.3.3	Failing Necessity via Barren Proxies	186
		6.3.4	Failing Necessity via Incidental Cancellations	188
	6.4	Stable	versus Incidental Unbiasedness	189
		6.4.1	Motivation	189
		6.4.2	Formal Definitions	191
		6.4.3	Operational Test for Stable No-Confounding	192
	6.5	Confo	unding, Collapsibility, and Exchangeability	193
		6.5.1	Confounding and Collapsibility	193
		6.5.2	Confounding versus Confounders	194
		6.5.3	Exchangeability versus Structural Analysis of Confounding	196
	6.6	Conclu	isions	199
7	The	Logic	of Structure-Based Counterfactuals	201
	7.1	Structu	ural Model Semantics	202
		7.1.1	Definitions: Causal Models, Actions, and Counterfactuals	202
		7.1.2	Evaluating Counterfactuals: Deterministic Analysis	207
		7.1.3	Evaluating Counterfactuals: Probabilistic Analysis	212
		7.1.4	The Twin Network Method	213
	7.2	Applic	cations and Interpretation of Structural Models	215
		7.2.1	Policy Analysis in Linear Econometric Models:	
			An Example	215
		7.2.2	The Empirical Content of Counterfactuals	217
		7.2.3	Causal Explanations, Utterances, and Their Interpretation	221
		7.2.4	From Mechanisms to Actions to Causation	223
	7 2	1.2.5 A wisom	Simon's Causal Ordering	220
	1.3	AXION	The Axioms of Structural Counterfactuals	228
		7.5.1	Causal Effects from Counterfactual Logic: An Example	220
		7.3.2	A vioms of Causal Relevance	231
	74	Struct	ural and Similarity-Based Counterfactuals	234
	7.4	741	Relations to Lewis's Counterfactuals	238
		7.4.2	Axiomatic Comparison	230
		7.4.3	Imaging versus Conditioning	242
		7.4.4	Relations to the Nevman–Rubin Framework	243
		7.4.5	Exogeneity and Instruments: Counterfactual and	
			Graphical Definitions	245
	7.5	Struct	ural versus Probabilistic Causality	249
		7.5.1	The Reliance on Temporal Ordering	249
		7.5.2	The Perils of Circularity	250
		7.5.3	Challenging the Closed-World Assumption, with Children	252
		7.5.4	Singular versus General Causes	253
		7.5.5	Summary	256
8	Imp	perfect	Experiments: Bounding Effects and Counterfactuals	259
	8.1	Introd	uction	259
		8.1.1	Imperfect and Indirect Experiments	259
		8.1.2	Noncompliance and Intent to Treat	261

	8.2	Boundi	ing Causal Effects with Instrumental Variables	262
		8.2.1	Problem Formulation: Constrained Optimization	262
		8.2.2	Canonical Partitions: The Evolution of	
			Finite-Response Variables	263
		8.2.3	Linear Programming Formulation	266
		8.2.4	The Natural Bounds	268
		8.2.5	Effect of Treatment on the Treated (ETT)	269
		8.2.6	Example: The Effect of Cholestyramine	270
	8.3	Counte	rfactuals and Legal Responsibility	271
	8.4	A Test	for Instruments	274
	8.5	A Baye	esian Approach to Noncompliance	275
		8.5.1	Bayesian Methods and Gibbs Sampling	275
		8.5.2	The Effects of Sample Size and Prior Distribution	277
		8.5.3	Causal Effects from Clinical Data with Imperfect	
			Compliance	277
		8.5.4	Bayesian Estimate of Single-Event Causation	280
	8.6	Conclu	sion	281
9	Prob	ability o	of Causation: Interpretation and Identification	283
	9.1	Introdu	iction	283
	9.2	Necess	ary and Sufficient Causes: Conditions of Identification	286
		9.2.1	Definitions, Notation, and Basic Relationships	286
		9.2.2	Bounds and Basic Relationships under Exogeneity	289
		9.2.3	Identifiability under Monotonicity and Exogeneity	291
		9.2.4	Identifiability under Monotonicity and Nonexogeneity	293
	9.3	Examp	les and Applications	296
		9.3.1	Example 1: Betting against a Fair Coin	296
		9.3.2	Example 2: The Firing Squad	297
		9.3.3	Example 3: The Effect of Radiation on Leukemia	299
		9.3.4	Example 4: Legal Responsibility from Experimental and	
			Nonexperimental Data	302
		9.3.5	Summary of Results	303
	9.4	Identifi	cation in Nonmonotonic Models	304
	9.5	Conclu	sions	307
10	The	Actual (Cause	309
	10.1	Introdu	ction: The Insufficiency of Necessary Causation	309
		10.1.1	Singular Causes Revisited	309
		10.1.2	Preemption and the Role of Structural Information	311
		10.1.3	Overdetermination and Quasi-Dependence	313
		10.1.4	Mackie's INUS Condition	313
	10.2	Produc	tion, Dependence, and Sustenance	316
	10.3	Causal	Beams and Sustenance-Based Causation	318
		10.3.1	Causal Beams: Definitions and Implications	318
		10.3.2	Examples: From Disjunction to General Formulas	320
		10.3.3	Beams, Preemption, and the Probability of	
			Single-Event Causation	322

		10.3.4 I	Path-Switching Causation	324	
		10.3.5	Temporal Preemption	325	
	10.4	Conclusi	ions	327	
11	Reflec	ctions, El	laborations, and Discussions with Readers	331	
	11.1	Causal,	, Statistical, and Graphical Vocabulary	331	
		11.1.1	Is the Causal-Statistical Dichotomy Necessary?	331	
		11.1.2	d-Separation without Tears (Chapter 1, pp. 16–18)	335	
	11.2	Revers	ing Statistical Time (Chapter 2, p. 58–59)	337	
	11.3	Estimating Causal Effects			
		11.3.1	The Intuition behind the Back-Door Criterion		
			(Chapter 3, p. 79)	338	
		11.3.2	Demystifying "Strong Ignorability"	341	
		11.3.3	Alternative Proof of the Back-Door Criterion	344	
		11.3.4	Data vs. Knowledge in Covariate Selection	346	
		11.3.5	Understanding Propensity Scores	348	
		11.3.6	The Intuition behind do-Calculus	352	
		11.3.7	The Validity of G-Estimation	352	
	11.4	Policy	Evaluation and the <i>do</i> -Operator	354	
		11.4.1	Identifying Conditional Plans (Section 4.2, p. 113)	354	
		11.4.2	The Meaning of Indirect Effects	355	
		11.4.3	Can $do(x)$ Represent Practical Experiments?	358	
		11.4.4	Is the $do(x)$ Operator Universal?	359	
		11.4.5	Causation without Manipulation!!!	361	
		11.4.6	Hunting Causes with Cartwright	362	
		11.4.7	The Illusion of Nonmodularity	364	
	11.5	Causal	Analysis in Linear Structural Models	366	
		11.5.1	General Criterion for Parameter Identification		
			(Chapter 5, pp. 149–54)	366	
		11.5.2	The Causal Interpretation of Structural Coefficients	366	
		11.5.3	Defending the Causal Interpretation of SEM (or, SEM		
			Survival Kit)	368	
		11.5.4	Where Is Economic Modeling Today? – Courting		
			Causes with Heckman	374	
		11.5.5	External Variation versus Surgery	376	
	11.6	Decisio	ons and Confounding (Chapter 6)	380	
		11.6.1	Simpson's Paradox and Decision Trees	380	
		11.6.2	Is Chronological Information Sufficient for		
			Decision Trees?	382	
		11.6.3	Lindley on Causality, Decision Trees, and Bayesianism	384	
		11.6.4	Why Isn't Confounding a Statistical Concept?	387	
	11.7	The Ca	alculus of Counterfactuals	389	
		11.7.1	Counterfactuals in Linear Systems	389	
		11.7.2	The Meaning of Counterfactuals	391	
		11.7.3	d-Separation of Counterfactuals	393	

11.8 Instrumental Variables and Noncompliance				
	11.8.1 Tight Bounds under Noncompliance	395		
11.9	11.9 More on Probabilities of Causation			
	11.9.1 Is "Guilty with Probability One" Ever Possible?	396		
	11.9.2 Tightening the Bounds on Probabilities of Causation	398		
Epilogue The Art and Science of Cause and Effect				
A pub	lic lecture delivered in November 1996 as part of			
the UC	LA Faculty Research Lectureship Program	401		
Bibliography		429		
Name Index		453		
Subject Index				