Contents in Brief

	Preface	vili
1	The Foundations of Biochemistry	1
	STRUCTURE AND CATALYSIS	45
2	Water	47
3	Amino Acids, Peptides, and Proteins	75
4	The Three-Dimensional Structure of Proteins	115
5	Protein Function	157
6	Enzymes	187
7	Carbohydrates and Glycobiology	241
8	Nucleotides and Nucleic Acids	279
9	DNA-Based Information Technologies	319
10	Lipids	361
11	Biological Membranes and Transport	387
12	Biosignaling	437
	BIOENERGETICS AND METABOLISM	491
13		495
14	Glycolysis, Gluconeogenesis, and the	
	Pentose Phosphate Pathway	533
15	Principles of Metabolic Regulation	575
16	The Citric Acid Cycle	619
17	Fatty Acid Catabolism	649
18	Amino Acid Oxidation and the Production of Urea	675
19	Oxidative Phosphorylation	711
20	Photosynthesis and Carbohydrate Synthesis in Plants	755
21	Lipid Biosynthesis	811
22	Biosynthesis of Amino Acids, Nucleotides,	
	and Related Molecules	859
23	Hormonal Regulation and Integration of	007
	Mammalian Metabolism	907
	INFORMATION PATHWAYS	955
24		957
25		987
	RNA Metabolism	1035
27	Protein Metabolism	1077
28	Regulation of Gene Expression	1127
	Abbreviated Solutions to Problems	AS-1
	Glossary	G-1
	Index	I-1

Contents

1	The Foundations of Biochemistry	1
1.1	Cellular Foundations	3
	Cells Are the Structural and Functional Units	
	of All Living Organisms	3
	Cellular Dimensions Are Limited by Diffusion	3
	Organisms Belong to Three Distinct Domains of Life Organisms Differ Widely in Their Sources of Energy	4
	and Biosynthetic Precursors	5
	Bacterial and Archaeal Cells Share Common	
	Features but Differ in Important Ways	6
	Eukaryotic Cells Have a Variety of Membranous Organelles, Which Can Be Isolated for Study	7
	The Cytoplasm Is Organized by the Cytoskeleton	1
	and Is Highly Dynamic	7
	Cells Build Supramolecular Structures	9
	In Vitro Studies May Overlook Important Interactions	
	among Molecules	11
17	Chemical Foundations	12
1.4	Biomolecules Are Compounds of Carbon with a	
	Variety of Functional Groups	12
	BOX III Molecular Weight, Molecular Mass, and Their	
	Correct Units	13
	Cells Contain a Universal Set of Small Molecules	13
	Macromolecules Are the Major Constituents of Cells	15
	Three-Dimensional Structure Is Described by	16
	Configuration and Conformation BOX 12 Louis Pasteur and Optical Activity: In Vino, Veritas	18
	Interactions between Biomolecules Are Stereospecific	19
1.3	Physical Foundations	21
	Living Organisms Exist in a Dynamic Steady State,	
	Never at Equilibrium with Their Surroundings	21
	Organisms Transform Energy and Matter from	~ •
	Their Surroundings	21
	BOXTES Entropy: Things Fall Apart The Flow of Electrons Provides Energy for Organisms	22 22
	Creating and Maintaining Order Requires Work and	64
	Energy	22
	Energy Coupling Links Reactions in Biology	24
	$K_{\rm eq}$ and ΔG° Are Measures of a Reaction's Tendency	
	to Proceed Spontaneously	25
	Enzymes Promote Sequences of Chemical Reactions Metabolism Is Regulated to Achieve Balance	27
	and Economy	29
1.4	Genetic Foundations	29
	Genetic Continuity Is Vested in Single DNA Molecules	30
	The Structure of DNA Allows Its Replication and	00
	Repair with Near-Perfect Fidelity	31
	The Linear Sequence in DNA Encodes Proteins with	
	Three-Dimensional Structures	31
1.5	Evolutionary Foundations	32
	Changes in the Hereditary Instructions	90
	Allow Evolution	32

	Biomolecules First Arose by Chemical Evolution RNA or Related Precursors May Have Been	33
	the First Genes and Catalysts	34
	Biological Evolution Began More Than Three	
	and a Half Billion Years Ago	35
	The First Cell Probably Used Inorganic Fuels	35
	Eukaryotic Cells Evolved from Simpler Precursors in Several Stages	37
	Molecular Anatomy Reveals Evolutionary	51
	Relationships	37
	Functional Genomics Shows the Allocations of	
	Genes to Specific Cellular Processes	39
	Genomic Comparisons Have Increasing Importance	
	in Human Biology and Medicine	39
	STRUCTURE AND CATALYSIS	45
-	Matan	47
2	Water	47
2.1	Weak Interactions in Aqueous Systems	47
	Hydrogen Bonding Gives Water Its Unusual	
	Properties	47
	Water Forms Hydrogen Bonds with Polar Solutes	49
	Water Interacts Electrostatically with Charged	50
	Solutes Entropy Increases as Crystalline Substances Dissolve	$\frac{50}{51}$
	Nonpolar Gases Are Poorly Soluble in Water	51
	Nonpolar Compounds Force Energetically	
	Unfavorable Changes in the Structure	
	of Water	51
	van der Waals Interactions Are Weak Interatomic	50
	Attractions Weak Interactions Are Crucial to Macromolecular	53
	Structure and Function	54
	Solutes Affect the Colligative Properties of Aqueous	•••
	Solutions	55
22	Ionization of Water, Weak Acids, and Weak Bases	58
2.2	Pure Water Is Slightly Ionized	58
	The Ionization of Water Is Expressed by an	00
	Equilibrium Constant	59
	The pH Scale Designates the H^+ and OH^-	
	Concentrations	60
	Weak Acids and Bases Have Characteristic Acid	61
	Dissociation Constants Titration Curves Reveal the pK_a of Weak Acids	62
2.3	Buffering against pH Changes in Biological Systems	63
	Buffers Are Mixtures of Weak Acids and Their	64
	Conjugate Bases	04
	The Henderson-Hasselbalch Equation Relates pH, pK_a , and Buffer Concentration	64
	Weak Acids or Bases Buffer Cells and Tissues against	
	pH Changes	65
	Untreated Diabetes Produces Life-Threatening	
	Acidosis	67
	BOX 2-1 MEDICINE On Being One's Own Rabbit	

(Don't Try This at Home!)

2.5 The Fitness of the Aqueous Environment

2.4 Water as a Reactant

for ¹ iving Organisms

3	Amino Acids, Peptides, and Proteins	75
3.1	Amino Acids	75
	Amino Acids Share Common Structural Features The Amino Acid Residues in Proteins Are	76
	L Stereoisomers	78
	Amino Acids Can Be Classified by R Group BOX 3-1 METHODS Absorption of Light by Molecules:	78
	The Lambert-Beer Law	80
	Uncommon Amino Acids Also Have Important Functions	81
	Amino Acids Can Act as Acids and Bases	81
	Amino Acids Have Characteristic Titration Curves Titration Curves Predict the Electric Charge of	82
	Amino Acids Amino Acids Differ in Their Acid-Base Properties	84 84
27		85
3.2	Peptides and Proteins Peptides Are Chains of Amino Acids	85
	Peptides Can Be Distinguished by Their Ionization Behavior	86
	Biologically Active Peptides and Polypeptides Occur in a Vast Range of Sizes and Compositions	87
	Some Proteins Contain Chemical Groups Other Than Amino Acids	88
3.3	Working with Proteins	89
	Proteins Can Be Separated and Purified Proteins Can Be Separated and Characterized	89
	by Electrophoresis Unseparated Proteins Can Be Quantified	92 95
3.4	The Structure of Proteins: Primary Structure	96
	The Function of a Protein Depends on Its Amino Acid Sequence The Amino Acid Sequences of Millions of Proteins	97
	Have Been Determined Protein Chemistry Is Enriched by Methods Derived	97
	from Classical Polypeptide Sequencing Mass Spectrometry Offers an Alternative Method	98
	to Determine Amino Acid Sequences Small Peptides and Proteins Can Be Chemically Synthesized	100 102
	Amino Acid Sequences Provide Important Biochemical Information	102
	Protein Sequences Help Elucidate the History of Life on Earth	104
	BOX 3-2 Consensus Sequences and Sequence Logos	105
4	The Three-Dimensional Structure of Proteins	115
4.1	Overview of Protein Structure	116
	A Protein's Conformation Is Stabilized Largely	
	by Weak Interactions The Peptide Bond Is Rigid and Planar	$\frac{116}{117}$
4.2	Protein Secondary Structure	119
	The α Helix Is a Common Protein Secondary Structure	120
	BOX 4-1 METHODS Knowing the Right Hand from the Left	121
	Amino Acid Sequence Affects Stability of the α Helix	121

68

69

and the second second

	The β Conformation Organizes Polypeptide	
	Chains into Sheets	123
	β Turns Are Common in Proteins	123
	Common Secondary Structures Have Characteristic	100
	Dihedral Angles	123
	Common Secondary Structures Can Be Assessed by Circular Dichroism	125
4.3	Protein Tertiary and Quaternary Structures	125
	Fibrous Proteins Are Adapted for a Structural	
	Function	125
	BOX 4-2 Permanent Waving Is Biochemical Engineering	127
	BOXER MEDICINE Why Sailors, Explorers, and College	480
	Students Should Eat Their Fresh Fruits and Vegetables	128
	Structural Diversity Reflects Functional Diversity	130
	in Globular Proteins Myoglobin Provided Early Clues about the	100
	Complexity of Globular Protein Structure	131
	BOX 4-43 The Protein Data Bank	132
	Globular Proteins Have a Variety of Tertiary	
	Structures	133
	BOX 4-5 METHODS Methods for Determining the	
	Three-Dimensional Structure of a Protein	134
	Some Proteins or Protein Segments Are	
	Intrinsically Disordered	138
	Protein Motifs Are the Basis for Protein	100
	Structural Classification	139
	Protein Quaternary Structures Range from Simple Dimers to Large Complexes	141
4.4	Protein Denaturation and Folding	142
	Loss of Protein Structure Results in Loss of	
	Function	143
	Amino Acid Sequence Determines Tertiary Structure Polypeptides Fold Rapidly by a Stepwise Process	$\begin{array}{c} 144 \\ 144 \end{array}$
	Some Proteins Undergo Assisted Folding	144
	Defects in Protein Folding Provide the Molecular	140
	Basis for a Wide Range of Human Genetic	
	Disorders	147
	BOX 4-6 MEDICINE Death by Misfolding: The Prion	
	Diseases	150
5	Protein Function	157
5 5.	1 Reversible Binding of a Protein to a Ligand:	157
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins 	157 158
	1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group	157 158 158
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins 	157 158 158 159
	1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group	157 158 158
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively 	157 158 158 159
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind 	157 158 158 159 159
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood 	157 158 158 159 159 160
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar 	157 158 158 159 159 160 162 163
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to Myoglobin 	157 158 158 159 159 160 162
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to Myoglobin Hemoglobin Undergoes a Structural Change 	157 158 158 159 159 160 162 163 163
	 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to Myoglobin Hemoglobin Undergoes a Structural Change on Binding Oxygen 	157 158 158 159 159 160 162 163 163 163
	 1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to Myoglobin Hemoglobin Undergoes a Structural Change on Binding Oxygen Hemoglobin Binds Oxygen Cooperatively 	157 158 158 159 159 160 162 163 163
	 1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to Myoglobin Hemoglobin Undergoes a Structural Change on Binding Oxygen Hemoglobin Binds Oxygen Cooperatively Cooperative Ligand Binding Can Be Described Quantitatively 	157 158 158 159 159 160 162 163 163 163
	 1 Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Oxygen Can Bind to a Heme Prosthetic Group Globins Are a Family of Oxygen-Binding Proteins Myoglobin Has a Single Binding Site for Oxygen Protein-Ligand Interactions Can Be Described Quantitatively Protein Structure Affects How Ligands Bind Hemoglobin Transports Oxygen in Blood Hemoglobin Subunits Are Structurally Similar to Myoglobin Hemoglobin Undergoes a Structural Change on Binding Oxygen Hemoglobin Binds Oxygen Cooperatively Cooperative Ligand Binding Can Be 	157 158 158 159 159 160 162 163 163 164 165

	BOX 5-1 MEDICINE Carbon Monoxide: A Stealthy Killer Hemoglobin Also Transports H^+ and CO_2	168 169
	Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate	171
	Sickle Cell Anemia Is a Molecular Disease of Hemoglobin	172
5.2	Complementary Interactions between Proteins	
	and Ligands: The Immune System and	
	Immunoglobulins	174
	The Immune Response Includes a Specialized Array of Cells and Proteins	174
	Antibodies Have Two Identical Antigen-Binding Sites	175
	Antibodies Bind Tightly and Specifically to Antigen	177
	The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures	177
5.3	Protein Interactions Modulated by Chemical	
	Energy: Actin, Myosin, and Molecular Motors	179
	The Major Proteins of Muscle Are Myosin and Actin	179
	Additional Proteins Organize the Thin and Thick	
	Filaments into Ordered Structures	179
	Myosin Thick Filaments Slide along Actin Thin Filaments	182
6	Enzymes	187
6.1	An Introduction to Enzymes	187
	Most Enzymes Are Proteins	188
	Enzymes Are Classified by the Reactions	188
	They Catalyze	100
	1	
6.2	How Enzymes Work	190
6.2	Enzymes Affect Reaction Rates, Not Equilibria	190 190
6.2	Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise	190
6.2	Enzymes Affect Reaction Rates, Not Equilibria	
6.2	Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes	190
6.2	Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate	190 192 192
6.2	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State 	190 192
6.2	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction 	190 192 192
6.2	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State 	190 192 192 193
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis 	190 192 192 193 195
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis 	190 192 192 193 195
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism 	190 192 192 193 193 195 197
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions 	190 192 192 193 193 195 197
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration 	 190 192 192 193 195 197 198
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed 	 190 192 193 195 197 198 198
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively 	 190 192 192 193 195 197 198
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities 	 190 192 193 195 197 198 198
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities EOX 6-1 Transformations of the Michaelis-Menten 	 190 192 193 195 197 198 200
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities BOXGEN Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot 	 190 192 193 195 197 198 200
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities BOXIGEN Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot Many Enzymes Catalyze Reactions with Two or 	 190 192 192 193 195 197 198 200 201 202
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities BOX 6-1 Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot Many Enzymes Catalyze Reactions with Two or More Substrates 	 190 192 192 193 195 197 198 200 201 202 204
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities BOX Coll Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot Many Enzymes Catalyze Reactions with Two or More Substrates Enzyme Activity Depends on pH 	 190 192 192 193 195 197 198 200 201 202
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities BOX 6-1 Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot Many Enzymes Catalyze Reactions with Two or More Substrates Enzyme Activity Depends on pH Pre-Steady State Kinetics Can Provide Evidence for Specific Reaction Steps 	 190 192 192 193 195 197 198 200 201 202 204
	 Enzymes Affect Reaction Rates, Not Equilibria Reaction Rates and Equilibria Have Precise Thermodynamic Definitions A Few Principles Explain the Catalytic Power and Specificity of Enzymes Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State Binding Energy Contributes to Reaction Specificity and Catalysis Specific Catalytic Groups Contribute to Catalysis Enzyme Kinetics as an Approach to Understanding Mechanism Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively Kinetic Parameters Are Used to Compare Enzyme Activities BOX661 Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot Many Enzymes Catalyze Reactions with Two or More Substrates Enzyme Activity Depends on pH Pre-Steady State Kinetics Can Provide Evidence 	 190 192 193 195 197 198 200 201 202 204 205

Contents	xxiii
----------	-------

	BOX 6-2 Kinetic Tests for Determining Inhibition	
	Mechanisms	209
	BIOXCOS MEDICINE Curing African Sleeping Sickness	
	with a Biochemical Trojan Horse	211
	with a blochennear nojan norse	211
6.4	Examples of Enzymatic Reactions	213
	The Chymotrypsin Mechanism Involves Acylation	
	and Deacylation of a Ser Residue	213
	An Understanding of Protease Mechanisms Leads	110
	to New Treatments for HIV Infections	215
	Hexokinase Undergoes Induced Fit on Substrate	10
	Binding	218
	The Enclase Reaction Mechanism Requires	410
	Metal Ions	220
	Lysozyme Uses Two Successive Nucleophilic	220
	Displacement Reactions	220
	An Understanding of Enzyme Mechanism	220
	Produces Useful Antibiotics	223
	FIGURES USERII ANDIOLICS	440
6.5	Regulatory Enzymes	225
	Allosteric Enzymes Undergo Conformational	
	Changes in Response to Modulator Binding	226
	The Kinetic Properties of Allosteric Enzymes	220
	Diverge from Michaelis-Menten Behavior	227
	Some Enzymes Are Regulated by Reversible	441
	Covalent Modification	228
		440
	Phosphoryl Groups Affect the Structure and	990
	Catalytic Activity of Enzymes	229
	Multiple Phosphorylations Allow Exquisite	000
	Regulatory Control	230
	Some Enzymes and Other Proteins Are	
	Regulated by Proteolytic Cleavage of an	000
	Enzyme Precursor	230
	A Cascade of Proteolytically Activated Zymogens	0.00
	Leads to Blood Coagulation	232
	Some Regulatory Enzymes Use Several Regulatory	
	Mechanisms	235
7	Carbohydrates and Glycobiology	241
	, , , , , , , , , , , , , , , , , , , ,	
7.1	Monosaccharides and Disaccharides	241
	The Two Families of Monosaccharides Are	
	Aldoses and Ketoses	242
	Monosaccharides Have Asymmetric Centers	242
	The Common Monosaccharides Have Cyclic	
	Structures	243
	Organisms Contain a Variety of Hexose Derivatives	247
	BOX 7-1 MEDICINE Blood Glucose Measurements in the	211
		740
	Diagnosis and Treatment of Diabetes	248
	Monosaccharides Are Reducing Agents	249
	Disaccharides Contain a Glycosidic Bond	250
	BOX 7-2 Sugar Is Sweet, and So Are a Few	
	Other Things	252
7 7	Polycocchoridor	252
1.2	Polysaccharides	272
	Some Homopolysaccharides Are Storage Forms	050
	of Fuel	253
	Some Homopolysaccharides Serve Structural Roles	254
	Steric Factors and Hydrogen Bonding Influence	a
	Homopolysaccharide Folding	256
	Bacterial and Algal Cell Walls Contain Structural	
	Heteropolysaccharides	258

	Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix	258
7.3	Glycoconjugates: Proteoglycans, Glycoproteins,	
1.5	and Glycosphingolipids	261
	Proteoglycans Are Glycosaminoglycan-Containing	
	Macromolecules of the Cell Surface and	0.01
	Extracellular Matrix	261
	Degradation of Sulfated Glycosaminoglycans	
	Can Lead to Serious Human Disease	264
	Glycoproteins Have Covalently Attached	
	Oligosaccharides	265
	Glycolipids and Lipopolysaccharides Are Membrane Components	266
7.4	Carbohydrates as Informational Molecules:	
	The Sugar Code	267
	Lectins Are Proteins That Read the Sugar	
	Code and Mediate Many Biological Processes	268
	Lectin-Carbohydrate Interactions Are Highly Specific and Often Multivalent	071
		271
7.5	Working with Carbohydrates	272
8	Nucleotides and Nucleic Acids	279
81	Some Basics	279
0.1	Nucleotides and Nucleic Acids Have Characteristic	21)
	Bases and Pentoses	279
	Phosphodiester Bonds Link Successive Nucleotides	
	in Nucleic Acids	282
		404
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	284
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	284
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure	
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	284
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic	284 285 285
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms	284 285 285 288
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures	284 285 285 288 288
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms	284 285 285 288
8.2	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains	284 285 285 288 288
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures	284 285 285 288 289 290 292
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured	284 285 285 288 288 289 290
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo	284 285 285 288 289 290 292 292 295
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations	284 285 285 288 289 290 292 292 295 295 297
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated	284 285 285 288 289 290 292 292 295 295 297 299
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations	284 285 285 288 289 290 292 292 295 295 297
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemístry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction	284 285 285 288 289 290 292 292 295 295 297 299
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be	284 285 288 289 290 292 295 295 297 299 301 301
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be Determined	284 285 285 288 289 290 292 295 295 295 297 299 301 301 302
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be	284 285 288 289 290 292 295 295 297 299 301 301
	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be Determined EOX.8-1 A Potent Weapon in Forensic Medicine	284 285 285 288 289 290 292 295 295 295 297 299 301 301 302
8.3	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be Determined JOX3ET A Potent Weapon in Forensic Medicine DNA Sequencing Technologies Are Advancing	284 285 288 289 290 292 295 295 295 297 299 301 301 302 304
8.3	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemístry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be Determined EOXISI A Potent Weapon in Forensic Medicine DNA Sequencing Technologies Are Advancing Rapidly Other Functions of Nucleotides Nucleotides Carry Chemical Energy in Cells	284 285 288 289 290 292 295 295 295 297 299 301 301 302 304 306
8.3	The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures Nucleic Acid Chemistry Double-Helical DNA and RNA Can Be Denatured Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations Some Bases of DNA Are Methylated The Chemical Synthesis of DNA Has Been Automated Gene Sequences Can Be Amplified with the Polymerase Chain Reaction The Sequences of Long DNA Strands Can Be Determined SOXS-1 A Potent Weapon in Forensic Medicine DNA Sequencing Technologies Are Advancing Rapidly Other Functions of Nucleotides	284 285 285 288 289 290 292 295 295 295 297 299 301 301 301 302 304 306 310

xxiv Contents

Some Nucleotides Are Regulatory Molecules311Adenine Nucleotides Also Serve as Signals312

9	DNA-Based Information	
	Technologies	319
9.1	Studying Genes and Their Products	320
	Genes Can Be Isolated by DNA Cloning	320
	Restriction Endonucleases and DNA Ligases Yield	
	Recombinant DNA	321
	Cloning Vectors Allow Amplification of Inserted	
	DNA Segments	324
	Cloned Genes Can Be Expressed to Amplify Protein Production	327
	Many Different Systems Are Used to Express Recombinant Proteins	328
	Alteration of Cloned Genes Produces Altered	020
	Proteins	330
	Terminal Tags Provide Handles for Affinity	000
	Purification	332
	The Polymerase Chain Reaction Can Be Adapted	
	for Convenient Cloning	332
9.2	Using DNA-Based Methods to Understand	
	Protein Function	335
	DNA Libraries Are Specialized Catalogs of	
	Genetic Information	335
	Sequence or Structural Relationships Provide	
	Information on Protein Function	335
	Fusion Proteins and Immunofluorescence Can	
	Reveal the Location of Proteins in Cells	336
	Protein-Protein Interactions Can Help Elucidate	
	Protein Function	338
	DNA Microarrays Reveal RNA Expression	041
	Patterns and Other Information Inactivating or Altering a Gene with CRISPR	341
	Can Reveal Gene Function	342
9.3	Genomics and the Human Story	344
	BOX 9-1 MEDICINE Personalized Genomic Medicine	345
	Annotation Provides a Description of the Genome	346
	The Human Genome Contains Many Types of	
	Sequences	346
	Genome Sequencing Informs Us about Our	
	Humanity Conome Comparisons Help Leasts Games	348
	Genome Comparisons Help Locate Genes Involved in Disease	950
	Genome Sequences Inform Us about Our Past	350
	and Provide Opportunities for the Future	353
	BOX 9-2 Getting to Know Humanity's Next of Kin	353
10	Lipids	361
10.1	-	
10.1		361
	Fatty Acids Are Hydrocarbon Derivatives Triacylglycerols Are Fatty Acid Esters of Glycerol	361
	That sugar the raily Acid Esters of Glycerol	364

Triacylglycerols Provide Stored Energy and

Partial Hydrogenation of Cooking Oils Improves

Their Stability but Creates Fatty Acids with

364

365

Insulation

Harmful Health Effects

11.1	The Composition and Architecture	
	Transport	387
11	Biological Membranes and	
	Functions	384
	Structure Lipidomics Seeks to Catalog All Lipids and Their	383
	Mass Spectrometry Reveals Complete Lipid	000
	Specific Hydrolysis Aids in Determination of Lipid Structure	383
	of Volatile Lipid Derivatives	382
	Gas Chromatography Resolves Mixtures	
	of Different Polarity	382
	Lipid Extraction Requires Organic Solvents Adsorption Chromatography Separates Lipids	382
10.4	Working with Lipids	381
10 /		201
	Biological Activities	381
	Dienes Polyketides Are Natural Products with Potent	380
	Many Natural Pigments Are Lipidic Conjugated	000
	Biosynthesis	380
	Dolichols Activate Sugar Precursors for	
	Are Oxidation-Reduction Cofactors	378
	Vitamins E and K and the Lipid Quinones	UTT
	Signals Vitamins A and D Are Hormone Precursors	$376 \\ 377$
	Vascular Plants Produce Thousands of Volatile	976
	Tissues	376
	Steroid Hormones Carry Messages between	
	Eicosanoids Carry Messages to Nearby Cells	375
	Derivatives Act as Intracellular Signals	374
1013	Phosphatidylinositols and Sphingosine	
10.3	Lipids as Signals, Cofactors, and Pigments	374
	Membrane Lipids: Some Inherited Human Diseases	373
	BOX 10-1 MEDICINE Abnormal Accumulations of	
	Sterols Have Four Fused Carbon Rings	372
	in Lysosomes	372
	Phospholipids and Sphingolipids Are Degraded	0.1
	Biological Recognition	371
	Sphingolipids Are Derivatives of Sphingosine Sphingolipids at Cell Surfaces Are Sites of	370
	Archaea Contain Unique Membrane Lipids	369
	Sulfolipids	369
	Chloroplasts Contain Galactolipids and	100
	Fatty Acids	369
	Some Glycerophospholipids Have Ether-Linked	
	Phosphatidic Acid	367
	Glycerophospholipids Are Derivatives of	
10.2	Structural Lipids in Membranes	366
	Repellents	365
	Waxes Serve as Energy Stores and Water	905

11.1The Composition and Architectureof Membranes388Each Type of Membrane Has Characteristic388Lipids and Proteins388All Biological Membranes Share Some389Fundamental Properties389A Lipid Bilayer Is the Basic Structural Element389of Membranes389

	Three Types of Membrane Proteins Differ in the Nature of Their Association with the Membrane Many Integral Membrane Proteins Span the	391
	Lipid Bilayer Hydrophobic Regions of Integral Proteins	392
	Associate with Membrane Lipids The Topology of an Integral Membrane Protein	393
	Can Often Be Predicted from Its Sequence Covalently Attached Lipids Anchor Some	394
	Membrane Proteins Amphitropic Proteins Associate Reversibly with	395
	the Membrane	397
11.2	Membrane Dynamics	397
	Acyl Groups in the Bilayer Interior Are Ordered	
	to Varying Degrees	397
	Transbilayer Movement of Lipids Requires	
	Catalysis	398
	Lipids and Proteins Diffuse Laterally in the Bilayer	399
	Sphingolipids and Cholesterol Cluster Together	101
	in Membrane Rafts Membrane Curvature and Fusion Are Central to	401
	Many Biological Processes	402
	Integral Proteins of the Plasma Membrane Are	104
	Involved in Surface Adhesion, Signaling, and	
	Other Cellular Processes	405
11 3	Solute Transport across Membranes	405
11.5	Transport May Be Passive or Active	406
	Transport May De l'assive of Active Transporters and Ion Channels Share Some	100
	Structural Properties but Have Different	
	Mechanisms	406
	The Glucose Transporter of Erythrocytes	
	Mediates Passive Transport	408
	The Chloride-Bicarbonate Exchanger Catalyzes	
	Electroneutral Cotransport of Anions across	410
	the Plasma Membrane	410
	BOX 11-1 MEDICINE Defective Glucose and Water Transport in Two Forms of Diabetes	411
	Active Transport Results in Solute Movement	411
	against a Concentration or Electrochemical	
	Gradient	412
	P-Type ATPases Undergo Phosphorylation during	
	Their Catalytic Cycles	413
	V-Type and F-Type ATPases Are ATP-Driven	110
	Proton Pumps	416
	ABC Transporters Use ATP to Drive the Active Transport of a Wide Variety of Substrates	417
	Ion Gradients Provide the Energy for Secondary	411
	Active Transport	418
	BOX11-2 MEDICINE A Defective Ion Channel in Cystic	
	Fibrosis	419
	Aquaporins Form Hydrophilic Transmembrane	
	Channels for the Passage of Water	423
	Ion-Selective Channels Allow Rapid Movement	
	of Ions across Membranes	425
	Ion-Channel Function Is Measured Electrically	425
	The Structure of a K ⁺ Channel Reveals the Basis	426
	for Its Specificity Gated Ion Channels Are Central in Neuronal	440
	Function	427
	Defective Ion Channels Can Have Severe	
	Physiological Consequences	430

12	Biosignaling	437
12.1	General Features of Signal Transduction	437
12.2	G Protein—Coupled Receptors and Second	
	Messengers	440
	The β -Adrenergic Receptor System Acts through the Second Messenger cAMP	441
	BOX 12-1 G Proteins: Binary Switches in Health	
	and Disease Several Mechanisms Cause Termination of the	444
	β -Adrenergic Response	447
	The β -Adrenergic Receptor Is Desensitized by Phosphorylation and by Association with Arrestin Cyclic AMP Acts as a Second Messenger for Many	448
	Regulatory Molecules	449
	Diacylglycerol, Inositol Trisphosphate, and Ca ²⁺ Have Related Roles as Second Messengers	451
	BOX 1222 METHODS FRET: Biochemistry Visualized in	
	a Living Cell Calcium Is a Second Messenger That Is Localized in Space and Time	452 452
12.3	GPCRs in Vision, Olfaction, and	
	Gustation	456
	The Vertebrate Eye Uses Classic GPCR Mechanisms	456
	BOXI233 MEDICINE Color Blindness: John Dalton's	400
	Experiment from the Grave	458
	Vertebrate Olfaction and Gustation Use Mechanisms Similar to the Visual System	459
	All GPCR Systems Share Universal Features	459
12.4	Receptor Tyrosine Kinases	461
	Stimulation of the Insulin Receptor Initiates a Cascade of Protein Phosphorylation Reactions The Membrane Phospholipid PIP ₃ Functions at	461
	a Branch in Insulin Signaling Cross Talk among Signaling Systems Is Common	463
	and Complex	465
12.5	Receptor Guanylyl Cyclases, cGMP, and	
	Protein Kinase G	466
12.6	Multivalent Adaptor Proteins and Membrane	
	Rafts	467
	Protein Modules Bind Phosphorylated Tyr, Ser, or Thr Residues in Partner Proteins Membrane Rafts and Caveolae Segregate	468
	Signaling Proteins	470
12.7	Gated Ion Channels	471
	Ion Channels Underlie Electrical Signaling in Excitable Cells Voltage Gated Ion Channels Produce Neuronal	471
	Voltage-Gated Ion Channels Produce Neuronal Action Potentials	472
	Neurons Have Receptor Channels That Respond to Different Neurotransmitters	473
	Toxins Target Ion Channels	473 473
12.8	Regulation of Transcription by Nuclear	
	Hormone Receptors	473

xxvi	Contents

42.0	Cine Line in Misseersenisms and Diants	475
12.9	Signaling in Microorganisms and Plants Bacterial Signaling Entails Phosphorylation in a Two-Component System	475
	Signaling Systems of Plants Have Some of the Same Components Used by Microbes and	110
	Mammals	476
12.10	Regulation of the Cell Cycle by Protein Kinases The Cell Cycle Has Four Stages	476 476
	Levels of Cyclin-Dependent Protein Kinases Oscillate	477
	CDKs Regulate Cell Division by Phosphorylating Critical Proteins	479
12.11	Oncogenes, Tumor Suppressor Genes, and	
	Programmed Cell Death	481
	Oncogenes Are Mutant Forms of the Genes for Proteins That Regulate the Cell Cycle BOX 12-4 MEDICINE Development of Protein Kinase	481
	Inhibitors for Cancer Treatment	482
	Defects in Certain Genes Remove Normal	
	Restraints on Cell Division	$\frac{484}{485}$
	Apoptosis Is Programmed Cell Suicide	400
Ш	BIOENERGETICS AND METABOLISM	491
13	Bioenergetics and Biochemical	
	Reaction Types	495
12.1		
13.1	Bioenergetics and Thermodynamics Biological Energy Transformations Obey the	496
	Laws of Thermodynamics	496
	Cells Require Sources of Free Energy	497
	Standard Free-Energy Change Is Directly Related to the Equilibrium Constant	497
	Actual Free-Energy Changes Depend on Reactant	
	and Product Concentrations	499
	Standard Free-Energy Changes Are Additive	500
13.2	Chemical Logic and Common Biochemical	
	Reactions Biochemical and Chemical Equations Are Not	501
	Identical	506
13.3	Phosphoryl Group Transfers and ATP	507
13.5	The Free-Energy Change for ATP Hydrolysis	507
	Is Large and Negative	507
	Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies	
	of Hydrolysis	509
	ATP Provides Energy by Group Transfers, Not	
	by Simple Hydrolysis ATP Donates Phosphoryl, Pyrophosphoryl,	511
	and Adenylyl Groups	513
	Assembly of Informational Macromolecules	
	Assembly of Informational Macromolecules Requires Energy	513 514
	Assembly of Informational Macromolecules	

Transphosphorylations between Nucleotides

Occur in All Cell Types

	Inorganic Polyphosphate Is a Potential Phosphoryl Group Donor	516
13.4	Biological Oxidation-Reduction Reactions The Flow of Electrons Can Do Biological Work	517 518
	Oxidation-Reductions Can Be Described as Half-Reactions Biological Oxidations Often Involve	518
	Dehydrogenation Reduction Potentials Measure Affinity for	519 520
	Electrons Standard Reduction Potentials Can Be Used to	
	Calculate Free-Energy Change Cellular Oxidation of Glucose to Carbon Dioxide	521
	Requires Specialized Electron Carriers A Few Types of Coenzymes and Proteins Serve	522
	as Universal Electron Carriers NADH and NADPH Act with Dehydrogenases	522
	as Soluble Electron Carriers NAD Has Important Functions in Addition to	522
	Electron Transfer Dietary Deficiency of Niacin, the Vitamin Form	524
	of NAD and NADP, Causes Pellagra Flavin Nucleotides Are Tightly Bound in	525
	Flavoproteins	525
14	Glycolysis, Gluconeogenesis, and	
	the Pentose Phosphate Pathway	533
14.1	Glycolysis	534
	An Overview: Glycolysis Has Two Phases The Preparatory Phase of Glycolysis	534
	Requires ATP The Payoff Phase of Glycolysis Yields ATP	538
	and NADH The Overall Balance Sheet Shows a Net Gain	540
	of ATP Glycolysis Is under Tight Regulation	545 545
	BOX 441 MEDICINE High Rate of Glycolysis in	040
	Tumors Suggests Targets for Chemotherapy and	
	Facilitates Diagnosis	546
	Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus	548
14.2	Feeder Pathways for Glycolysis	548
	Dietary Polysaccharides and Disaccharides Undergo Hydrolysis to Monosaccharides	548
	Endogenous Glycogen and Starch Are Degraded by Phosphorolysis	550
	Other Monosaccharides Enter the Glycolytic Pathway at Several Points	551
14.3	Fates of Pyruvate under Anaerobic Conditions:	
1113	Fermentation	553
	Pyruvate Is the Terminal Electron Acceptor	
	in Lactic Acid Fermentation BOX14-2 Athletes, Alligators, and Coelacanths:	553
	Glycolysis at Limiting Concentrations of Oxygen Ethanol Is the Reduced Product in Ethanol	554
	Fermentation	555
	Thiamine Pyrophosphate Carries "Active Acetaldehyde" Groups	555

	BOX 14-3 Ethanol Fermentations: Brewing Beer	
	and Producing Biofuels	556
	Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals	556
14.4	Gluconeogenesis	558
	Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions	560
	Conversion of Fructose 1,6-Bisphosphate to Fructose 6-Phosphate Is the Second Bypass Conversion of Glucose 6-Phosphate to Glucose	562
	Is the Third Bypass Gluconeogenesis Is Energetically Expensive,	563
	but Essential Citric Acid Cycle Intermediates and Some	563
	Amino Acids Are Glucogenic Mammals Cannot Convert Fatty Acids to Glucose	563 564
	Glycolysis and Gluconeogenesis Arc Reciprocally Regulated	564
14 5	Pentose Phosphate Pathway of Glucose Oxidation	565
1 7 .J	The Oxidative Phase Produces Pentose	303
	Phosphates and NADPH BOX 14-4 MEDICINE Why Pythagoras Wouldn't Eat	565
	Falafel: Glucose 6-Phosphate Dehydrogenase Deficiency The Nonoxidative Phase Recycles Pentose	566
	Phosphates to Glucose 6-Phosphate Wernicke-Korsakoff Syndrome Is Exacerbated	567
	by a Defect in Transketolase Glucose 6-Phosphate Is Partitioned between Glycolysis and the Pentose Phosphate Pathway	569 570
15	Principles of Metabolic Regulation	575
15.1	Regulation of Metabolic Pathways Cells and Organisms Maintain a Dynamic Steady	576
	State Both the Amount and the Catalytic Activity of an Enzyme Can Be Regulated	577
	Reactions Far from Equilibrium in Cells Are Common Points of Regulation	580
	Adenine Nucleotides Play Special Roles in Metabolic Regulation	582
15.2	Analysis of Metabolic Control	584
	The Contribution of Each Enzyme to Flux through a Pathway Is Experimentally Measurable The Flux Control Coefficient Quantifies the Effect of a Change in Enzyme Activity on	584
	Metabolite Flux through a Pathway The Elasticity Coefficient Is Related to an	585
	Enzyme's Responsiveness to Changes in Metabolite or Regulator Concentrations BOX 5-1 METHODS Metabolic Control Analysis:	585
	Quantitative Aspects	586
	The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a	587
	Pathway Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising	001
	Results	588

16 16.1	Phosphorylation and Dephosphorylation Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally Carbohydrate and Lipid Metabolism Are Integrated by Hormonal and Allosteric Mechanisms The Citric Acid Cycle Production of Acetyl-CoA (Activated Acetate)	 609 611 612 612 614 619 619
16	 Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally Carbohydrate and Lipid Metabolism Are Integrated by Hormonal and Allosteric Mechanisms 	611612612612614
	 Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally Carbohydrate and Lipid Metabolism Are Integrated 	611 612 612
	 Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism Allosteric and Hormonal Signals Coordinate Carbohydrate Metabolism Globally Carbohydrate and Lipid Metabolism Are Integrated 	611 612
	Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism Allosteric and Hormonal Signals Coordinate	611 612
	Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to Glycogen Metabolism	611
	Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin Phosphoprotein Phosphatase 1 Is Central	611
	Glycogen Synthase Kinase 3 Mediates Some of the Actions of Insulin	
		609
	Phoenhorylation and Donhoenhorylation	600
	Glycogen Synthase Is Also Regulated by	
	and Hormonally	608
	Glycogen Phosphorylase Is Regulated Allosterically	
	and Synthesis	608
15.5	Coordinated Regulation of Glycogen Breakdown	
	in Glycogen	607
	Glycogenin Primes the Initial Sugar Residues	
	Metabolism and Disease	604
	BOX 15-41 Carl and Gerty Cori: Pioneers in Glycogen	000
	The Sugar Nucleotide UDP-Glucose Donates Glucose for Glycogen Synthesis	603
	in Liver, Replenish Blood Glucose	601
	Glucose 1-Phosphate Can Enter Glycolysis or,	
	Glycogen Breakdown is Catalyzed by Glycogen Phosphorylase	601
13,4	The Metabolism of Glycogen in Animals Glycogen Breakdown Is Catalyzed by	001
15 4		601
	Rare Forms of Diabetes	599
	BOXISS MEDICINE Genetic Mutations That Lead to	000
	Gluconeogenesis Changes the Number of Enzyme Molecules	596
	Transcriptional Regulation of Glycolysis and	
	Types of Regulation	595
	Phosphoenolpyruvate Is under Multiple	
	The Gluconeogenic Conversion of Pyruvate to	000
	The Glycolytic Enzyme Pyruvate Kinase Is Allosterically Inhibited by ATP	595
	Carbohydrate and Fat Metabolism	593
	Xylulose 5-Phosphate Is a Key Regulator of	
	Allosteric Regulator of PFK-1 and FBPase-1	593
	Regulated Fructose 2,6-Bisphosphate Is a Potent	592
	1,6-Bisphosphatase Are Reciprocally	500
	Phosphofructokinase-1 and Fructose	
	6-Phosphatase Are Transcriptionally Regulated	592
	Hexokinase IV (Glucokinase) and Glucose	390
	the Same Reaction	590
	Glucose 6-Phosphate BOX 15-2 Isozymes: Different Proteins That Catalyze	590
	Affected Differently by Their Product,	500
	Hexokinase Isozymes of Muscle and Liver Are	
	and Gluconeogenesis	589
15.3	Coordinated Regulation of Glycolysis	
	Pathway	588
	Method for Increasing Flux through a	500
	Metabolic Control Analysis Suggests a General	

Pyruvate Is Oxidized to Acetyl-CoA and $\rm CO_2$

xxviii Contents

	The Pyruvate Dehydrogenase Complex Employs Five Coenzymes The Pyruvate Dehydrogenase Complex Consists of Three Distinct Enzymes In Substrate Channeling, Intermediates Never Leave the Enzyme Surface	621 621 623
16.2	Reactions of the Citric Acid Cycle	624
	The Sequence of Reactions in the Citric Acid Cycle Makes Chemical Sense The Citric Acid Cycle Has Eight Steps	624 626
	BOX IC Moonlighting Enzymes: Proteins with More Than One Job	628
	BOX 1622 Synthases and Synthetases; Ligases and	
	Lyases; Kinases, Phosphatases, and Phosphorylases:	
	Yes, the Names Are Confusing!	631
	The Energy of Oxidations in the Cycle Is Efficiently Conserved	633
	BOX 16-3 Citrate: A Symmetric Molecule That Reacts	(24
	Asymmetrically Why Is the Oxidation of Acetate So Complicated? Citric Acid Cycle Components Are Important	634 635
	Biosynthetic Intermediates Anaplerotic Reactions Replenish Citric Acid	636
	Cycle Intermediates Biotin in Pyruvate Carboxylase Carries	636
	CO ₂ Groups	638
16.3	Regulation of the Citric Acid Cycle Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by	640
	Allosteric and Covalent Mechanisms The Citric Acid Cycle Is Regulated at Its Three	640
	Exergonic Steps Substrate Channeling through Multienzyme Complexes May Occur in the Citric	641
	Acid Cycle Some Mutations in Enzymes of the Citric Acid	641
	Cycle Lead to Cancer	642
17	Fatty Acid Catabolism	649
17.1	Digestion, Mobilization, and Transport of Fats	650
	Dietary Fats Are Absorbed in the Small Intestine	650
	Hormones Trigger Mobilization of Stored Triacylglycerols Fatty Acids Are Activated and Transported	651
	into Mitochondria	652
17.2	Oxidation of Fatty Acids	654
	The β Oxidation of Saturated Fatty Acids Has Four Basic Steps	655
	The Four β -Oxidation Steps Are Repeated to Yield Acetyl-CoA and ATP Acetyl-CoA Can Be Further Oxidized in the	656
	Citric Acid Cycle	657
	BOX 17-11 A Long Winter's Nap: Oxidizing Fats during	001
	Hibernation	658
	Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions Complete Oxidation of Odd-Number Fatty Acids	659
	Requires Three Extra Reactions	660

	BOX 17-2 Coenzyme B ₁₂ : A Radical Solution to a	662
	Perplexing Problem Transcription Factors Turn on the Synthesis of	662
	Proteins for Lipid Catabolism	664
	Genetic Defects in Fatty Acyl–CoA Dehydrogenases Cause Serious Disease	664
	Peroxisomes Also Carry Out β Oxidation The β -Oxidation Enzymes of Different Organelles	664
	Have Diverged during Evolution	665
	The ω Oxidation of Fatty Acids Occurs in the	666
	Endoplasmic Reticulum Phytanic Acid Undergoes α Oxidation in	000
	Peroxisomes	667
17.3	Ketone Bodies	668
	Ketone Bodies, Formed in the Liver, Are	
	Exported to Other Organs as Fuel Ketone Bodies Are Overproduced in Diabetes	668
	and during Starvation	670
18	Amino Acid Oxidation and the Production	
	of Urea	675
18.1	Metabolic Fates of Amino Groups	676
	Dietary Protein Is Enzymatically Degraded to	0.55
	Amino Acids Pyridoxal Phosphate Participates in the Transfer	677
	of α -Amino Groups to α -Ketoglutarate	679
	Glutamate Releases Its Amino Group as Ammonia in the Liver	680
	Glutamine Transports Ammonia in the	000
	Bloodstream	682
	Alanine Transports Ammonia from Skeletal Muscles to the Liver	683
	Ammonia Is Toxic to Animals	683
18.2	Nitrogen Excretion and the Urea Cycle	684
	Urea Is Produced from Ammonia in Five	001
	Enzymatic Steps The Citric Acid and Urea Cycles Can Be Linked	$\begin{array}{c} 684 \\ 686 \end{array}$
	The Activity of the Urea Cycle Is Regulated at	
	Two Levels BOX 18-1 MEDICINE Assays for Tissue Damage	687 688
	Pathway Interconnections Reduce the Energetic	000
	Cost of Urea Synthesis	688
	Genetic Defects in the Urea Cycle Can Be Life- Threatening	688
18.3		690
10.3	Some Amino Acids Are Converted to Glucose,	070
	Others to Ketone Bodies	691
	Several Enzyme Cofactors Play Important Roles in Amino Acid Catabolism	691
	Six Amino Acids Are Degraded to Pyruvate	694
	Seven Amino Acids Are Degraded to Acetyl-CoA Phenylalanine Catabolism Is Genetically	697
	Defective in Some People	697
	Five Amino Acids Are Converted to	700
	α-Ketoglutarate Four Amino Acids Are Converted to Succinyl-CoA	$\frac{700}{701}$
	Branched-Chain Amino Acids Are Not Degraded	

in the Liver

	Asparagine and Aspartate Are Degraded to Oxaloacetate	703
	SOX 1852 MEDICINE Scientific Sleuths Solve a Murder Mystery	704
19.	Oxidative Phosphorylation	711
19.1	The Mitochondrial Respiratory Chain	712
	Electrons Are Funneled to Universal Electron	
	Acceptors Electrons Pass through a Series of	712
	Membrane-Bound Carriers	714
	Electron Carriers Function in Multienzyme Complexes	717
	Mitochondrial Complexes Associate in	111
	Respirasomes	722
	Other Pathways Donate Electrons to the Respiratory Chain via Ubiquinone	723
	BIOX 19-11 METHODS Determining Three-Dimensional	
	Structures of Large Macromolecular Complexes by	
	Single-Particle Cryo-Electron Microscopy	724
	The Energy of Electron Transfer Is Efficiently Conserved in a Proton Gradient	724
	Reactive Oxygen Species Are Generated during	
	Oxidative Phosphorylation Plant Mitochondria Have Alternative Mechanisms	726
	for Oxidizing NADH	727
	BOX 19-2 Hot, Stinking Plants and Alternative	
	Respiratory Pathways	728
19.2	ATP Synthesis	728
	In the Chemiosmotic Model, Oxidation and	700
	Phosphorylation Are Obligately Coupled ATP Synthase Has Two Functional Domains,	729
	F_o and F_1	731
	ATP Is Stabilized Relative to ADP on the Surface	799
	of F1 The Proton Gradient Drives the Release of ATP	732
	from the Enzyme Surface	732
	Each β Subunit of ATP Synthase Can Assume	733
	Three Different Conformations Rotational Catalysis Is Key to the Binding-Change	(55
	Mechanism for ATP Synthesis	735
	How Does Proton Flow through the F _o Complex Produce Rotary Motion?	735
	BOX 19-3 Atomic Force Microscopy to Visualize	100
	Membrane Proteins	737
	Chemiosmotic Coupling Allows Nonintegral	
	Stoichiometries of O_2 Consumption and ATP Synthesis	738
	The Proton-Motive Force Energizes Active	
	Transport	738
	Shuttle Systems Indirectly Convey Cytosolic NADH into Mitochondria for Oxidation	739
19.3	Regulation of Oxidative Phosphorylation	741
	Oxidative Phosphorylation Is Regulated	
	by Cellular Energy Needs	741
	An Inhibitory Protein Prevents ATP Hydrolysis during Hypoxia	741
	Hypoxia Leads to ROS Production and Several	
	Adaptive Responses	742

	ATP-Producing Pathways Are Coordinately Regulated	743
19.4	Mitochondria in Thermogenesis, Steroid	
	Synthesis, and Apoptosis Uncoupled Mitochondria in Brown Adipose	744
	Tissue Produce Heat Mitochondrial P-450 Monooxygenases Catalyze	744
	Steroid Hydroxylations Mitochondria Are Central to the Initiation of	744
10 5	Apoptosis	745
19.5	Mitochondrial Genes: Their Origin and the	
	Effects of Mutations Mitochondria Evolved from Endosymbiotic	746
	Bacteria Mutations in Mitochondrial DNA Accumulate	746
	throughout the Life of the Organism Some Mutations in Mitochondrial Genomes	747
	Cause Disease A Rare Form of Diabetes Results from Defects	748
	in the Mitochondria of Pancreatic β Cells	749
20	Photosynthesis and Carbohydrate	
	Synthesis in Plants	755
20.1	Light Absorption	756
	Chloroplasts Are the Site of Light-Driven Electron Flow and Photosynthesis in Plants	756
	Chlorophylls Absorb Light Energy for Photosynthesis Accessory Pigments Extend the Range of Light	759
	Absorption Chlorophylls Funnel Absorbed Energy to Reaction	759
	Centers by Exciton Transfer	761
20.2	Photochemical Reaction Centers	763
	Photosynthetic Bacteria Have Two Types of Reaction Center	763
	Kinetic and Thermodynamic Factors Prevent the Dissipation of Energy by Internal Conversion	766
	In Plants, Two Reaction Centers Act in Tandem The Cytochrome $b_6 f$ Complex Links	766
	Photosystems II and I Cyclic Electron Flow between PSI and the	770
	Cytochrome $b_6 f$ Complex Increases the Production of ATP Relative to NADPH	771
	State Transitions Change the Distribution of LHCII between the Two Photosystems	771
	Water Is Split by the Oxygen-Evolving Complex	773
20.3	ATP Synthesis by Photophosphorylation	774
	A Proton Gradient Couples Electron Flow and Phosphorylation	774
	The Approximate Stoichiometry of Photophosphorylation Has Been Established	775
	The ATP Synthase of Chloroplasts Resembles That of Mitochondria	775
20.4	Evolution of Oxygenic Photosynthesis	776
	Chloroplasts Evolved from Ancient Photosynthetic	
	Bacteria	776

xxix

Contents

XXX Contents

	In Halobacterium, a Single Protein Absorbs Light and Pumps Protons to Drive ATP Synthesis	778
20.5	Carbon-Assimilation Reactions Carbon Dioxide Assimilation Occurs in Three	780
	Stages	780
	Synthesis of Each Triose Phosphate from CO ₂	
	Requires Six NADPH and Nine ATP	786
	A Transport System Exports Triose Phosphates from the Chloroplast and Imports Phosphate	788
	Four Enzymes of the Calvin Cycle Are Indirectly Activated by Light	79 0
20.6	Photorespiration and the C₄ and	
	CAM Pathways	792
	Photorespiration Results from Rubisco's	
	Oxygenase Activity	792
	The Salvage of Phosphoglycolate Is Costly	793
	In C ₄ Plants, CO ₂ Fixation and Rubisco Activity Are Spatially Separated	794
	BOX 20-1 Will Genetic Engineering of Photosynthetic	706
	Organisms Increase Their Efficiency?	796
	In CAM Plants, CO ₂ Capture and Rubisco Action Are Temporally Separated	798
20.7	Biosynthesis of Starch, Sucrose, and Cellulose	798
	ADP-Glucose Is the Substrate for Starch Synthesis in Plant Plastids and for Glycogen Synthesis in Bacteria	798
	UDP-Glucose Is the Substrate for Sucrose	700
	Synthesis in the Cytosol of Leaf Cells Conversion of Triose Phosphates to Sucrose and	799
	Starch Is Tightly Regulated	799
	The Glyoxylate Cycle and Gluconeogenesis	100
	Produce Glucose in Germinating Seeds	800
	Cellulose Is Synthesized by Supramolecular Structures in the Plasma Membrane	802
20.0) Internetion of Controls Alice to Bullion to	
20.8	3	
	Plants	804
	Pools of Common Intermediates Link Pathways in Different Organelles	804
21	Lipid Biosynthesis	811
21. 1	Biosynthesis of Fatty Acids and Eicosanoids Malonyl-CoA Is Formed from Acetyl-CoA and	811
	Bicarbonate	811
	Fatty Acid Synthesis Proceeds in a Repeating	
	Reaction Sequence	812
	The Mammalian Fatty Acid Synthase Has	
	Multiple Active Sites	814
	Fatty Acid Synthase Receives the Acetyl and	
	Malonyl Groups The Fatty Acid Synthase Reactions Are	814
	Repeated to Form Palmitate	816
	Fatty Acid Synthesis Is a Cytosolic Process in	010
	Many Organisms but Takes Place in the	
	Chloroplasts in Plants	817
	Acetate Is Shuttled out of Mitochondria as	
	Citrate	817

	Fatty Acid Biosynthesis Is Tightly Regulated	818
	Long-Chain Saturated Fatty Acids Are	000
	Synthesized from Palmitate	820
	Desaturation of Fatty Acids Requires a Mixed-Function Oxidase	821
	BOX 21-1 MEDICINE Oxidases, Oxygenases,	041
	Cytochrome P-450 Enzymes, and Drug Overdoses	822
	Eicosanoids Are Formed from 20- and	
	22 Carbon Polyunsaturated Fatty Acids	824
11 1	Riceumthesis of Triaculalycarols	826
21.2	Biosynthesis of Triacylglycerols Triacylglycerols and Glycerophospholipids Are	020
	Synthesized from the Same Precursors	826
	Triacylglycerol Biosynthesis in Animals Is	
	Regulated by Hormones	827
	Adipose Tissue Generates Glycerol 3-Phosphate	
	by Glyceroneogenesis	829
	Thiazolidinediones Treat Type 2 Diabetes by	000
	Increasing Glyceroneogenesis	829
21.3	Biosynthesis of Membrane Phospholipids	830
	Cells Have Two Strategies for Attaching	
	Phospholipid Head Groups	830
	Phospholipid Synthesis in <i>E. coli</i> Employs	831
	CDP-Diacylglycerol Eukaryotes Synthesize Anionic Phospholipids	001
	from CDP-Diacylglycerol	833
	Eukaryotic Pathways to Phosphatidylserine,	
	Phosphatidylethanolamine, and	
	Phosphatidylcholine Are Interrelated	833
	Plasmalogen Synthesis Requires Formation of	094
	an Ether-Linked Fatty Alcohol Sphingolipid and Glycerophospholipid Synthesis	834
	Share Precursors and Some Mechanisms	835
	Polar Lipids Are Targeted to Specific	
	Cellular Membranes	835
21.4	Cholesterol, Steroids, and Isoprenoids:	
	Biosynthesis, Regulation, and Transport	837
	Cholesterol Is Made from Acetyl-CoA in Four	
	Stages	838
	Cholesterol Has Several Fates	842
	Cholesterol and Other Lipids Are Carried on	
	Plasma Lipoproteins	842
	BOX 21-2 MEDICINE ApoE Alleles Predict Incidence of	
	Alzheimer Disease Cholostary I Fotoro Potton Colla ha Decontor	844
	Cholesteryl Esters Enter Cells by Receptor- Mediated Endocytosis	846
	HDL Carries Out Reverse Cholesterol Transport	847
	Cholesterol Synthesis and Transport Are	011
	Regulated at Several Levels	847
	Dysregulation of Cholesterol Metabolism Can	
	Lead to Cardiovascular Disease	849
	Reverse Cholesterol Transport by HDL Counters	050
	Plaque Formation and Atherosclerosis BOX 21-3 MEDICINE The Lipid Hypothesis and the	850
	Development of Statins	851
	Steroid Hormones Are Formed by Side-Chain	
	Cleavage and Oxidation of Cholesterol	852
	Intermediates in Cholesterol Biosynthesis Have	
	Many Alternative Fates	853

22	Biosynthesis of Amino Acids, Nucleotides,	
	and Related Molecules	859
22.1	Overview of Nitrogen Metabolism	860
	The Nitrogen Cycle Maintains a Pool of Biologically Available Nitrogen Nitrogen Is Fixed by Enzymes of the	860
	Nitrogenase Complex	861
	BOX 22-1 Unusual Lifestyles of the Obscure but Abundant Ammonia Is Incorporated into Biomolecules	862
	through Glutamate and Glutamine Glutamine Synthetase Is a Primary Regulatory	866
	Point in Nitrogen Metabolism Several Classes of Reactions Play Special Roles	867
	in the Biosynthesis of Amino Acids and Nucleotides	868
22.2	Biosynthesis of Amino Acids	869
	α -Ketoglutarate Gives Rise to Glutamate, Glutamine, Proline, and Arginine	870
	Serine, Glycine, and Cysteine Are Derived	
	from 3-Phosphoglycerate Three Nonessential and Six Essential Amino	872
	Acids Are Synthesized from Oxaloacetate	0.70
	and Pyruvate Chorismate Is a Key Intermediate in the	873
	Synthesis of Tryptophan, Phenylalanine,	876
	and Tyrosine Histidine Biosynthesis Uses Precursors	810
	of Purine Biosynthesis Amino Acid Biosynthesis Is under Allosteric	876
	Regulation	877
22.3	Molecules Derived from Amino Acids	880
	Glycine Is a Precursor of Porphyrins	880
	Heme Degradation Has Multiple Functions	882
	BOX 22-2 MEDICINE On Kings and Vampires Amino Acids Are Precursors of Creatine and Glutathione	884 884
	D-Amino Acids Are Found Primarily in Bacteria	885
	Aromatic Amino Acids Are Precursors of Many Plant Substances	886
	Biological Amines Are Products of Amino Acid Decarboxylation	886
	Arginine Is the Precursor for Biological Synthesis of Nitric Oxide	887
22.4	Biosynthesis and Degradation of Nucleotides	888
	De Novo Purine Nucleotide Synthesis Begins with PRPP	890
	Purine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition	892
	Pyrimidine Nucleotides Are Made from Aspartate,	
	PRPP, and Carbamoyl Phosphate Pyrimidine Nucleotide Biosynthesis Is Regulated	893
	by Feedback Inhibition	893
	Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates	894
	Ribonucleotides Are the Precursors	
	of Deoxyribonucleotides Thymidylate Is Derived from dCDP and dUMP	894 898

	Degradation of Purines and Pyrimidines	
	Produces Uric Acid and Urea, Respectively	898
	Purine and Pyrimidine Bases Are Recycled	
	by Salvage Pathways	900
	Excess Uric Acid Causes Gout	900
	Many Chemotherapeutic Agents Target Enzymes in Nucleotide Biosynthetic Pathways	901
23	Hormonal Regulation and Integration	
		007
	of Mammalian Metabolism	907
23.1	Hormones: Diverse Structures for Diverse	
	Functions	907
	The Detection and Purification of Hormones	507
		908
	Requires a Bioassay BOX 23-1 MEDICINE How Is a Hormone Discovered?	900
		000
	The Arduous Path to Purified Insulin	909
	Hormones Act through Specific High-Affinity	010
	Cellular Receptors	910
	Hormones Are Chemically Diverse Hormone Release Is Regulated by a "Top-Down"	911
	Hierarchy of Neuronal and Hormonal Signals	915
	"Bottom-Up" Hormonal Systems Send Signals	910
	Back to the Brain and to Other Tissues	916
	Dack to the Drain and to Other Hissues	510
23.2	Tissue-Specific Metabolism: The Division of	
	Labor	918
	The Liver Processes and Distributes Nutrients	919
	Adipose Tissues Store and Supply Fatty Acids	919 922
	Brown and Beige Adipose Tissues Are	544
	Thermogenic	923
	Muscles Use ATP for Mechanical Work	925
	BOX 23-2 Creatine and Creatine Kinase: Invaluable	0.00
	Diagnostic Aids and the Muscle Builder's Friends	926
	The Brain Uses Energy for Transmission of	720
	Electrical Impulses	928
	Blood Carries Oxygen, Metabolites, and Hormones	929
23.3	Hormonal Regulation of Fuel Metabolism	930
	Insulin Counters High Blood Glucose	931
	Pancreatic β Cells Secrete Insulin in Response to	
	Changes in Blood Glucose	932
	Glucagon Counters Low Blood Glucose	934
	During Fasting and Starvation, Metabolism Shifts	
	to Provide Fuel for the Brain	935
	Epinephrine Signals Impending Activity	937
	Cortisol Signals Stress, Including Low Blood	005
	Glucose	937
	Diabetes Mellitus Arises from Defects in Insulin Production or Action	938
	Production of Action	950
23.4	Obesity and the Regulation of Body Mass	939
	Adipose Tissue Has Important Endocrine	
	Functions	939
	Leptin Stimulates Production of Anorexigenic	
	Peptide Hormones	941
	Leptin Triggers a Signaling Cascade That Regulates	
	Gene Expression	941
	The Leptin System May Have Evolved to Regulate	
	the Starvation Response	942

	Insulin Also Acts in the Arcuate Nucleus to Regulate Eating and Energy Conservation	942
	Adiponectin Acts through AMPK to Increase Insulin Sensitivity	942
	AMPK Coordinates Catabolism and Anabolism in	
	Response to Metabolic Stress The mTORC1 Pathway Coordinates Cell Growth	943
	with the Supply of Nutrients and Energy	944
	Diet Regulates the Expression of Genes Central to Maintaining Body Mass Short-Term Eating Behavior Is Influenced by	945
	Ghrelin, PYY ₃₋₃₆ , and Cannabinoids	946
	Microbial Symbionts in the Gut Influence Energy Metabolism and Adipogenesis	947
23.5	Obesity, Metabolic Syndrome, and	
	Type 2 Diabetes	9 49
	In Type 2 Diabetes the Tissues Become Insensitive to Insulin	949
	Type 2 Diabetes Is Managed with Diet, Exercise,	010
	Medication, and Surgery	950
	INFORMATION PATHWAYS	955
24	Genes and Chromosomes	957
		957
24.1	Chromosomal Elements Genes Are Segments of DNA That Code for	901
	Polypeptide Chains and RNAs	958
	DNA Molecules Are Much Longer Than the Cellular or Viral Packages That Contain Them	958
	Eukaryotic Genes and Chromosomes Are Very	900
	Complex	962
24.2	2 DNA Supercoiling	963
	Most Cellular DNA Is Underwound	964
	DNA Underwinding Is Defined by Topological Linking Number	965
	Topoisomerases Catalyze Changes in the Linking	000
	Number of DNA	967
	BOX 24-1 MEDICINE Curing Disease by Inhibiting Topoisomerases	970
	DNA Compaction Requires a Special Form of	570
	Supercolling	97 0
24.	3 The Structure of Chromosomes	972
	Chromatin Consists of DNA and Proteins	972
	Histones Are Small, Basic Proteins Nucleosomes Are the Fundamental Organizational	973
	Units of Chromatin	973
	Nucleosomes Are Packed into Highly Condensed	
	Chromosome Structures BOX 24-2 METHODS Epigenetics, Nucleosome	975
	Structure, and Histone Variants	976
	Condensed Chromosome Structures Are	
	Maintained by SMC Proteins Bacterial DNA Is Also Highly Organized	979 979
25	DNA Metabolism	987
25.	1 DNA Replication DNA Replication Follows a Set of Fundamental	989
	Rules	989

	DNA Is Degraded by Nucleases	991
	DNA Is Synthesized by DNA Polymerases	991
	Replication Is Very Accurate	993
	E. coli Has at Least Five DNA Polymerases	994
	DNA Replication Requires Many Enzymes and	005
	Protein Factors	995
	Replication of the <i>E. coli</i> Chromosome Proceeds	007
	in Stages	997
	Replication in Eukaryotic Cells Is Similar but	1003
	More Complex Viral DNA Polymerases Provide Targets for	1000
	Antiviral Therapy	1005
	Altivital Therapy	2000
25.2	DNA Repair	1005
	Mutations Are Linked to Cancer	1005
	All Cells Have Multiple DNA Repair Systems	1006
	The Interaction of Replication Forks with DNA	
	Damage Can Lead to Error-Prone Translesion	
	DNA Synthesis	1012
	BOX 25-1 MEDICINE DNA Repair and Cancer	1015
25.2	DNA Recombination	1016
25.5		1010
	Bacterial Homologous Recombination Is a DNA Repair Function	1017
	Eukaryotic Homologous Recombination Is	1011
	Required for Proper Chromosome Segregation	
	during Meiosis	1019
	Recombination during Meiosis Is Initiated	
	with Double-Strand Breaks	1021
	BOX 25-2 MEDICINE Why Proper Segregation of	
	Chromosomes Matters	1023
	Some Double-Strand Breaks Are Repaired by	
	Nonhomologous End Joining	1024
	Site-Specific Recombination Results in Precise	
	DNA Rearrangements	1025
	Transposable Genetic Elements Move from One	1007
	Location to Another	1027
	Immunoglobulin Genes Assemble by Recombination	1029
	Recombination	1020
26	RNA Metabolism	1035
74 1	DNA Dependent Curther to of DNA	107/
26.1	· · · · · · · · · · · · · · · · · · ·	1036
	RNA Is Synthesized by RNA Polymerases	1036
	RNA Synthesis Begins at Promoters Transcription Is Regulated at Several Levels	103 8 1039
	BOX 26-1 METHODS RNA Polymerase Leaves Its	1059
	Footprint on a Promoter	1040
	Specific Sequences Signal Termination of RNA	1040
	Synthesis	1041
	Eukaryotic Cells Have Three Kinds of Nuclear	1011
	RNA Polymerases	1042
	RNA Polymerase II Requires Many Other	
	Protein Factors for Its Activity	1042
	DNA-Dependent RNA Polymerase Undergoes	
	Selective Inhibition	1046
26 '	2 RNA Processing	1047
20.		1047
	Eukaryotic mRNAs Are Capped at the 5' End Both Introns and Exons Are Transcribed	1048
	from DNA into RNA	1048
	RNA Catalyzes the Splicing of Introns	1040

	Eukaryotic mRNAs Have a Distinctive 3' End Structure	1053
	A Gene Can Give Rise to Multiple Products by Differential RNA Processing Ribosomal RNAs and tRNAs Also Undergo	1054
	Processing Special-Function RNAs Undergo Several	1055
	Types of Processing RNA Enzymes Are the Catalysts of Some	1059
	Events in RNA Metabolism	1060
	Cellular mRNAs Are Degraded at Different Rates Polynucleotide Phosphorylase Makes Random RNA-like Polymers	1062 1063
26.3	RNA-Dependent Synthesis of RNA and DNA	1063
	Reverse Transcriptase Produces DNA from	
	Viral RNA Some Retroviruses Cause Cancer and AIDS	$\frac{1064}{1066}$
	Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin	1066
	BOX 26-2 MEDICINE Fighting AIDS with Inhibitors	
	of HIV Reverse Transcriptase	1067
	Telomerase Is a Specialized Reverse Transcriptase	1067
	Some RNAs Are Replicated by RNA-Dependent	
	RNA Polymerase RNA Synthesis Provides Clues to the Origin	1070
	of Life in an RNA World BOX 26=3 METHODS The SELEX Method for Generating	1070
	RNA Polymers with New Functions	1072
27	Protein Metabolism	1077
27 27.1	Protein Metabolism The Genetic Code	1077 1078
	The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates	
	The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural	1078 1078
	The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX27-11 Exceptions That Prove the Rule: Natural Variations in the Genetic Code	1078
	The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural	1078 1078
	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant 	1078 1078 1082
	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon 	1078 1078 1082 1084
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis 	 1078 1078 1082 1084 1085 1085 1085 1088
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates EOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages 	 1078 1078 1082 1084 1085
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX2751 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine 	 1078 1078 1082 1084 1085 1085 1085 1088
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features 	 1078 1078 1082 1084 1085 1085 1085 1088 1088
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs 	 1078 1078 1082 1084 1085 1085 1088 1088 1090
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach 	 1078 1078 1082 1084 1085 1085 1088 1088 1090 1092
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates EOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs Stage 2: A Specific Amino Acid Initiates Protein 	 1078 1078 1082 1084 1085 1085 1088 1090 1092 1092 1092 1096
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates BOX 27-1 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs Stage 2: A Specific Amino Acid Initiates Protein Synthesis BOX 27-2 Natural and Unnatural Expansion of the Genetic Code 	 1078 1078 1082 1084 1085 1085 1088 1090 1092 1092
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates EOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs Stage 2: A Specific Amino Acid Initiates Protein Synthesis BOX2722 Natural and Unnatural Expansion of the Genetic Code Stage 3: Peptide Bonds Are Formed in the 	 1078 1078 1082 1084 1085 1085 1088 1090 1092 1092 1092 1096
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates EOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs Stage 2: A Specific Amino Acid Initiates Protein Synthesis WOX2721 Natural and Unnatural Expansion of the Genetic Code Stage 3: Peptide Bonds Are Formed in the Elongation Stage Stage 4: Termination of Polypeptide Synthesis 	 1078 1078 1082 1084 1085 1085 1085 1088 1090 1092 1092 1092 1096 1098 1103
27.1	 The Genetic Code The Genetic Code Was Cracked Using Artificial mRNA Templates EOX2721 Exceptions That Prove the Rule: Natural Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More than One Codon The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing Affect How the Code Is Read Protein Synthesis Protein Biosynthesis Takes Place in Five Stages The Ribosome Is a Complex Supramolecular Machine Transfer RNAs Have Characteristic Structural Features Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs Stage 2: A Specific Amino Acid Initiates Protein Synthesis EXXXXXX Natural and Unnatural Expansion of the Genetic Code Stage 3: Peptide Bonds Are Formed in the Elongation Stage 	 1078 1078 1082 1084 1085 1085 1085 1088 1090 1092 1092 1092 1096 1098

	Stage 5: Newly Synthesized Polypeptide Chains Undergo Folding and Processing Ribosome Profiling Provides a Snapshot	1110
	of Cellular Translation Protein Synthesis Is Inhibited by Many	1111
11	Antibiotics and Toxins	1112
27.3	J	1114
	Posttranslational Modification of Many	
	Eukaryotic Proteins Begins in the Endoplasmic Reticulum Glycosylation Plays a Key Role in Protein	1114
	Targeting	1115
	Signal Sequences for Nuclear Transport Are Not Cleaved	1118
	Bacteria Also Use Signal Sequences for Protein Targeting	1118
	Cells Import Proteins by Receptor-Mediated Endocytosis	1119
	Protein Degradation Is Mediated by Specialized Systems in All Cells	1121
28	Regulation of Gene Expression	1127
28.1	Principles of Gene Regulation	1128
	RNA Polymerase Binds to DNA at Promoters	1128
	Transcription Initiation Is Regulated by Proteins and RNAs Many Bacterial Genes Are Clustered and	1129
	Regulated in Operons	1131
	The lac Operon Is Subject to Negative Regulation	1131
	Regulatory Proteins Have Discrete DNA-Binding Domains	1133
	Regulatory Proteins Also Have Protein-Protein Interaction Domains	1135
28.2	Regulation of Gene Expression in Bacteria	1138
	The <i>lac</i> Operon Undergoes Positive Regulation Many Genes for Amino Acid Biosynthetic	1138
	Enzymes Are Regulated by Transcription Attenuation Induction of the SOS Response Requires	1139
	Destruction of Repressor Proteins	1142
	Synthesis of Ribosomal Proteins Is Coordinated with rRNA Synthesis	1143
	The Function of Some mRNAs Is Regulated by Small RNAs in Cis or in Trans Some Genes Are Regulated by Genetic	1144
	Recombination	1146
28.3		1147
	Transcriptionally Active Chromatin Is Structurally Distinct from Inactive Chromatin	1148
	Most Eukaryotic Promoters Are Positively Regulated	1149
	DNA-Binding Activators and Coactivators Facilitate Assembly of the Basal Transcription Factors	1150
	The Genes of Galactose Metabolism in Yeast Are Subject to Both Positive and Negative	1100
	Regulation Transcription Activators Have a Modular	1153
	Structure	1154

XXXIV Contents

Eukaryotic Gene Expression Can Be Regulated		De
by Intercellular and Intracellular Signals	1155	
Regulation Can Result from Phosphorylation		St
of Nuclear Transcription Factors	1157	00000
Many Eukaryotic mRNAs Are Subject to		B
Translational Repression	1157	
Posttranscriptional Gene Silencing Is Mediated		Al
by RNA Interference	1158	
RNA-Mediated Regulation of Gene Expression		G
Takes Many Forms in Eukaryotes	1159	In

.55	Development Is Controlled by Cascades of Regulatory Proteins	1160
	Stem Cells Have Developmental Potential	1105
57	That Can Be Controlled	1165
	BOX 28-1 Of Fins, Wings, Beaks, and Things	1168
.57		
.58	Abbreviated Solutions to Problems	AS-1
.00	Glossary	G-1
59	Index	I-1