Contents

Introduction: Questions of Quest Stafford Beer	1
THEORY	
Information Theory Henri Atlan	9
History	9
Basic Elements of Information Theory	10
Recent Developments	24
Notes	41
Dynamical Systems Theory Franz Pichler	43
Introduction	43
Mathematical Definition	43
Classification	46
Behavior	48
Realization	48
Simulation	50
Homomorphisms	51
Composition	52
Decomposition	53
Conclusion	55
The Theory of Adaptive and Learning Systems Y. Z. Tsypkin	57
Introduction	57
Learning Problems	57
Algorithms of Learning	59
Learning Conditions and Limiting Potentialities of Learning	
Algorithms	62
Systems of Estimation of Random Process Characteristics	66
Pattern Recognition Systems	69

vi Contents

Learning Models	75
Inventory Control Systems	82
Usage of A Priori Information	84
Conclusion	89
General Systems Concepts George J. Klir	91
Introduction	91
Primitive Concepts	93
Primitive Systems	96
Systems Epistemological Levels	99
Classes of Systems Problems	105
Primary and Secondary Systems Traits	105
Classification of Systems Concepts	108
Systems Models	109
Goal and Performance	109
Goal-Oriented Generative Systems	110
Adaptive Systems	112
Systems Complexity	112
Systems Problem Solving	113
Historical and Bibliographical Survey	117
Methods of Systems Analysis and Model Building J. Michael McLean	121
Introduction	121
Temporal Change and Feedback	123
Graphs and Networks	125
Descriptions and Prescriptions	127
Empirical and Rational Approaches to Systems Analysis	128
Making Use of Mental Models	132
The Limitations of Systems Analysis	134
APPLICATIONS	
Cybernetics and Biology: Classic Attempts at Neuronal Modeling	141
Luigi M. Ricciardi	
Introduction	141
The Discovery of the Neuron	142
Models of Neurons and Neural Network	145
Bibliographical Notes	157
Cybernetics in Psychology and Education Gordon Pask	159
Introduction	159
Generalities	159
Specific Applications of the Emergent Discipline of General	
System Theory	160
Background Orientation	165
Conversation Theory and Its Methods	166
Results from Very Limited Systems	168

Contents	vii
Knowledge Representation	172
Results from a Liberalized Situation	172
Some Overall Discussion	176
Acknowledgement	176
Cybernetics in the Social Sciences Maria Nowakowska	177
Introduction	177
Classification of Models	177
A Model of Voice Allocation in Discussion	180
Prosocial Behavior—A Decision Theoretic Model	182
A Systemic Approach to Analysis of Behavior	191
Conclusions and Summary	231
Cybernetics and Health Care John H. Milsum and Charles A. Laszlo	235
Introduction	235
Cybernetics of Health	236
Cybernetics of the Health Care System	244
Information and Health Care: The Crucial Connection	253
Health Technology	257
Cybernetics in Management and Organization Raul Espejo	263
Introduction	263
Cybernetics and Organization	264
Cybernetics and Management	275
Conclusion	288
Engineering Cybernetics Manfred Peschel	291
Engineering Cybernetics Today	291
The Main Features of Quantified Systems Behavior	294
Fuzziness in Engineering Cybernetics	306
Polyoptimization in Engineering Cybernetics	313
Industrial Robots and Engineering Cybernetics	319
Cybernetics and Linguistics Igor A. Mel'čuk	323
Natural Language	323
Linguistics	324
General Conclusion	336
Acknowledgements	336
Abbreviations	337
Notes	337
Additional Note	337
Cybernetics and Artificial Intelligence	
Donald C. Gause and Gary Rogers	339
Introduction	339
Cybernetic and Intelligent Systems	339

viii Contents

Learning Mechanisms and Approaches	342
Examples: Conversational and Question-Answering Systems	347
Examples: Man-Machine Symbiotic Systems	354
Cooperative Computation and the Cybernetic Society	
Michael A. Arbib	361
Introduction	361
Changing Concepts of Cybernetics	362
The Computer Revolution	364
The Design of Social Systems in a Free Society	365
Networks in National and International Politics	366
Public Information Networks	368
Perspective	372
Cybernetics and Global Planning Ervin Laszlo	373
On Global Planning	373
A Paradigm for Global Planning	374
The Application of the Systems Paradigm in Global Planning	380
Conclusions	393
Notes	394
Cybernetics and the Future Harold A. Linstone	397
Introduction	397
The Legacy of the Past	401
Keys to the Future	403
A Pointillist View of the Future	405
Fears and Dangers	410
References	413
Author Index	435
Subject Index	441