Electrochemical Techniques in Bioanalysis				
C. E. Lunte, W. R. Heineman	•	•	•	1
Medical Applications of Electrochemical Sensors and Techniques				
G. S. Calabrese, K. M. O'Connell	•		•	49
Photoelectrochemical Solar Energy Conversion R. Memming				79
Mechanism of Reactions on Colloidal Microelectrodes and Size Quantization Effects				
A. Henglein	•	•		113
Author Index Volumes 101–143	•	•		181

Electrochemical Techniques in Bioanalysis

Craig E. Lunte* and William R. Heineman

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, U.S.A.

Introduction	3
Potentiometry	3
2.1 Ion-Selective Electrodes	
2.2 Gas-Sensing Electrodes	
2.3 Biocatalytic Membrane Electrodes: Biosensors	
2.4 Ion Sensitive Field Effect Transistor (ISFET)	
2.5 Miniature Electrodes and in vivo Measurements	
2.6 Potentiometric Immunoassay	
2 Dynamia Tashniauas	16
3 Dynamic Techniques	= -
3.1 Liquid Chromatography/Electrochemistry	
3.1.1 Hydrodynamic Voltammetry	
3.1.2 Mobile Phase Considerations	
3.1.3 Electrode Materials	
3.1.4 Cell Design	
3.1.5 Conversion Efficiency	
3.1.6 Performance Evaluation	
3.1.7 Applications	
3.1.7.1 Oxidative Applications	25
3.1.7.2 Reductive Applications	27
3.1.8 Voltammetric Detection	28
3.2 Enzyme Linked Electrochemical Techniques	
3.2.1 Off-Line Techniques	
3.2.2 Enzyme Reactors	
3.2.3 Enzyme Electrodes	

Craig E. Lunte and William R. Heineman

3.2.4 Electrochemical Enzyme Immunoassay							31
3.2.4.1 Heterogeneous Immunoassays.							33
3.2.4.2 Homogeneous Immunoassays .							34
3.3 In vivo Electrochemical Techniques					•	•	35
3.3.1 Measurement Techniques							35
3.3.1.1 Chronoamperometry							35
3.3.1.2 Linear Sweep Voltammetry							37
3.3.1.3 Differential Pulse Voltammetry							37
3.3.2 Electrodes for in vivo Analysis							37
3.3.3 Conclusion							38
3.4 Anodic Stripping Voltammetry							39
4 References							41

Medical Applications of Electrochemical Sensors and Techniques

Gary S. Calabrese and Kathleen M. O'Connell

Applied Research Department, Instrumentation Laboratory, 113 Hartwell Avenue, Lexington, Massachusetts, U.S.A.

1 Introduction	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	51
2 Blood pH, pCO ₂ and pO ₂ Mea	sur	em	ien	ts																	51
2.1 Introduction											•	•									51
2.2 pH Measurements									•									۰,			51
$2.3 pCO_2$ Measurements																					54
2.4 pO_2 Measurements		•	•	·		•		•	•	•	•	٠	•	•	٠	•	•	•	•	•	55
3 Ion-Selective Electrodes	•																				56
3.1 Introduction														•							56
3.2 Ion-Selective Membranes .				•		•		•	•			•	•				•	•	•	•	58
3.3 Electrode Fabrication		•	•			•				•				•	•	•				•	59
3.4 Clinical Application																					59
3.5 Summary		•	·	•	·	•	•	·	•	•	•	•	·	•	·	·	·	٠	٠	•	61
4 Enzyme Electrodes																					62
4.1 Introduction												• '				•	•	•			62
4.2 Enzyme Immobilization																	•		•		63
4.3 Applications			•						•				•	•							63
4.4 Summary		•	•	•	•	·	•	•	·	•	·	•	•	•	•	•	•	•	•	•	66
5 Electrochemical Immunoassay .														•.							67
5.1 Introduction																					67
5.2 Direct ECIA																					68
5.3 Indirect ECIA																					69
5.4 Miscellaneous Techniques																					72
5.5 The Future of ECIA																					72
6 References																					72

Photoelectrochemical Solar Energy Conversion

Rüdiger Memming

Philips GmbH Forschungslaboratorium Hamburg Vogt-Kölln-Str. 30, D-2000 Hamburg 54, FRG

,

1	Introduction	81
2	Photovoltaic Cells	81
	2.1 Solid State Photovoltaic Cells	81
	2.2 Electrochemical Photovoltaic Cells	84
	2.2.1 Mechanism of Regenerative Cells	84
	2.2.2 Analysis of Various Systems	88
	2.2.3 Stabilization of Semiconductor Electrodes	93
	2.2.4 Influence of Surface Recombination and Trapping	95
	2.3 Production of Storable Chemical Fuels	97
	2.3.1 General Aspects	
	2.3.2 Principles of Photoelectrolysis of Water	97
	2.3.3 Microheterogeneous Systems	100
	2.3.4 Catalytic Processes	
	2.3.5 Photoelectrolysis of H_2S and HI	106
	2.3.6 Reduction of CO_2 and Formation of CH_3OH .	
	2.3.7 Photoelectrochemical Production of NH_3	
3	Conclusions	109
4	References	109

Mechanism of Reactions on Colloidal Microelectrodes and Size Quantization Effects

Arnim Henglein

Hahn-Meitner-Institut Berlin Bereich Strahlenchemie, D-1000 Berlin 39, FRG

1	Introduction	115
2	Colloidal Metals	116
-	2.1 General Remarks	
	2.2 Catalysis of Free Radical Reactions by Colloidal Metals	
	2.3 Size Dependence of the Potential of a Microelectrode	
3	Colloidal Semiconductors: Metal Sulfides	125
	3.1 General Remarks	125
	3.2 Photoanodic Dissolution of Colloidal Semiconductors	126
	3.3 Fluorescence of CdS and ZnS	129
	3.4 Photocathodic Dissolution and Hydrogen Evolution	133
	3.5 The Problem of Water Splitting and Preparative Aspects	
	3.6 Some Basic Kinetic Aspects of Interfacial Photoreactions	138
	3.7 Flash Photolysis and Pulse Radiolysis Studies; Non-linear Optical Effects	142
4	Colloidal Semiconductors: Metal Oxides	148
-	4.1 General Remarks	
	4.2 Optical Detection of Electrons and Positive Holes in TiO_2 .	
	4.3 TiO ₂ Particles and the MV^{2+}/MV^{+} System	
	4.4 Various Flash Photolysis Studies on TiO ₂ Sols	155
	4.5 Hydrogen and Oxygen Generation on TiO ₂	157
	4.6 Other Metal Oxides: Fe_2O_3 , WO_3 , ZnO, CdO, In_2O_3 , MnO_2	159
5	Size Quantization Effects in Semiconductor Particles	164
	5.1 General Remarks	164
	5.1 General Remarks	
		165

Arnim Henglein

	5.5 Metal Oxides 5.6 Theory																
6	References		•		•	•		•		•	•	•	•	•	•		175

Small particles of metals in solution often behave like electrodes although they are not connected to a battery which determines their potential. However, when a chemical reaction occurs in the solution of such particles intermediate free radicals may transfer electrons to them. The particles are thus charged chemically and are able to act as a metal electrode on cathodic potential. Electron transfer reactions become possible at these micro-electrodes which cannot be brought about by the radicals in the absence of the colloidal catalyst.

Small semiconductor particles also act like microelectrodes upon illumination. Electrons and positive holes are created in the particles which initiate redox reactions. The charge carriers may also recombine and emit fluorescence light. Reaction with a solute leads to quenching of the fluorescence.

Besides these chemical effects, which are understood in terms of the established theories in semiconductor physics and chemical kinetics, new physico-chemical phenomena are observed in the case of extremely small particles. The metal or semiconductor behavior is gradually lost with decreasing size, the consequences being drastic changes in the optical properties of the materials and also in their photocatalytic effects.