Table of Contents

General Introduction. J. M. VAN ROSSUM .			•												•		1
--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	---	--	---

CHAPTER 1

Physicochemical Fundamentals and Thermodynamics of the Membrane Transport of Drugs. W. Scheler and J. Blanck with the assistance of E. KAHRIG, D. KIRSTEIN, K.-U. MÖRITZ and G. RAHMEL. With 11 Figures

I.	Introduction	3
II.	Systems and Membrane Types	3
	A. Homogenous System	3
	B. Heterogeneous Continuous System	4
	C. Heterogeneous Discontinuous System	4
	D. Membrane Types	4
	1. Liquid-Phase Membranes	4
	2. Pore Membranes	4
	a) Narrow-Pore Membranes	5
	b) Coarse-Pore Membranes	5
	c) Charged Porous Membranes	5
	3. Composed Membranes	6
	a) Composed Pore Membranes	6
	b) Composed Liquid Phase-Pore Membranes	6
	4. Biological Membranes	7
	a) Membranes with Passive Carrier Transport	8
	b) Membranes with Active Transport	8
ш	Classification of Membrane Transport	8
	A Diffusion Across Membranes	9
	1. Driving Forces	9
	2. Mechanism and Kinetics	10
	3. Specificity	11
	4. Inhibition Characteristics	12
	B. Facilitated Diffusion	13
	1. Mechanism	13
	2. Driving Force	14
	3. Counter-Transport	14
	4 Kinetics	14

Table	of	Conten	ts
-------	----	--------	----

5. Specificity	15
6. Competitive Inhibition	15
C. Active Transport	15
D. Pinocytosis	17
1. Mechanism	17
2. Specificity	18
3. Inhibition	18
IV Kinsting I There is a f Marshare Terror	10
IV. Kinetics and Thermodynamics of Membrane Transport.	10
A. Conventional Equations	10
B. Introductory Remarks on the Thermodynamics of Theversible	10
C Passive Transport of Nonelectrolytes	20
1. Elux Equations	20
2. Significance of the Dhenomenologic Coefficients	20
2. Significance of the Flictionichologic Coefficients	23
a) Ideal Semiperineable Membrane	23
c) Reflection Coefficient	24
d) Permeability Coefficient	24
Coupling of Eluyes	25
A Interpretation of Membrane Transport by Means of Frictional	20
Coefficients	27
a) General Equations	27
b) Connections Between Frictional and Phenomenologic	21
Coefficients	28
c) Physical Significance of the Coefficients	29
D. Passive Transport of Electrolytes Across Charged Membranes .	30
1. General Relations	30
2. Introduction of Frictional Coefficients	31
3. Permeability and Reflection Coefficients of 11-Valent Salts .	32
4. Permeability and Reflection Coefficients of 1-2- and 2-1-Valent	
Salts	33
E. Passive Carrier Transport	34
Kinetic Analysis and Flux Equations	34
a) Basic Equations	34
b) Limiting Cases	37
c) Counter-Transport and Competitive Exchange Diffusion	37
F. Active Transport	39
1. Kinetic Analysis and Conventional Flux Equations	39
2. Phenomenologic Treatment. Flux Equations	41
G. Remarks on Nonlinear Thermodynamic Approach to Membrane	
Transport	43
1. Introduction	43
2. Examples and Models	44
Appendix. Glossary of Symbols	48
References	50

CHAPTER 2

Pharmacokinetics. Kinetic Aspects of Absorption, Distribution, and Elimination of Drugs. E. KRÜGER-THIEMER. With 21 Figures

I.	Introduction63A. Basic Definitions63B. Historical Outline67
II.	Pharmacokinetic Models 68 A. Choise of Models 68 B. Critique of Models 71
III.	Models for Single-Dose Administration71A. Intra- and Extravascular Administration72B. Elimination751. Biotransformation772. Renal Excretion803. Extrarenal Excretion82C. Distribution83Protein Binding Models83
	D. Absorption
IV.	Multiple Dose Administration 106 A. The Therapeutic Purpose 106 1. Intravascular Administration of Multiple Doses 107 2. Continuous Intravenous Infusion 109 3. Extravascular Administration of Multiple Dose Therapy 109 4. Drug Accumulation and the Desired Plateau Effect 110 B. Dosage Regimens 110 1. Empirical Rules for Dosage Regimens 110 2. Theory of Dosage Regimens 111 3. Theory of Dosage Regimens 113 4. Dosage Regimens for Rapidly Absorbed Drugs 114 5. Dosage Regimens for Slowly Absorbed Drugs 115
V. (Conclusion
Refe	erences

CHAPTER 3

Pharmacokinetics of Biotransformation. J. M. VAN ROSSUM, C.A. M. VAN GINNEKEN, P. Th. HENDERSON, H. C. J. KETELAARS, and T.B. VREE. With 21 Figures

I. 1	Inti	roduction	125
	A.	Elimination of Drugs by a Clearance Process.	125
	В.	Flow-Limited Elimination of Drugs.	127
	C.	Supply-Limited Elimination of Drugs	128
	D.	Capacity-Limited Elimination of Drugs	129
	E.	The Relationship Between the Metabolic Enzyme Activity and the Meta-	
		bolic Clearance	130
	F.	The Plasma Decay Curve as a Result of Metabolic Clearance.	132
	G.	Calculation of Enzymatic Constants from the Plasma Decay Curve	135
	H.	Simultaneous Supply-Limited and Capacity-Limited Elimination of	
		Drugs	137
	I.	Dissociation Constants Obtained from Microsomal Enzymes	140
	J.	Inhibition of Drug Metabolism by Other Drugs	143
	Κ.	Induction of Microsomal Enzymes and the Liver Clearance	145
	L.	The Liver Clearance Under Pathologic Conditions	146
]	M.	Drug-Dependent Destruction of Metabolic Clearance Processes	147
	N.	Elimination of Parent Drug and its Metabolite	148
	О.	Saturation Kinetics of Metabolite Formation and Capacity-Limited	
		Elimination	149
	Ρ.	Multicompartment Kinetics and Capacity-Limited Elimination	151
	Q.	Oral Administration and Capacity-Limited Elimination	153
	R.	Oral Administration and Capacity-Limited Elimination in the Liver	155
	S.	The Accumulation Plateau Following Repetitive Dosing of a Drug.	158
	T.	The Accumulation Plateau and Capacity-Limited Elimination	158
	U.	The Accumulation Plateau and Capacity-Limited Elimination in the	
		Liver Compartment	161
	V.	The Renal Excretion Rate in Case of Capacity-Limited Elimination	162
1	W.	Metabolite Concentrations Following Chronic Medication	163
	Х.	Bioavailability and Capacity-Limited Elimination	164
II. (Co	nclusion	165
Refe	ere	nces	165

CHAPTER 4

General Theory of Drug-Receptor Interactions. Drug-Receptor Interaction Models. Calculation of Drug Parameters. F.G. VAN DEN BRINK. With 28 Figures

I.	Introduction	169
	A. The Utility of Theoretical Mathematical Models in Molecular	
	Pharmacology.	169
	B. The Affinity Between Drug Molecules and Receptors; the Concepts	
	Drug Activity and Receptor	170
	C. Intrinsic Activity; the Concepts Agonism, Competitive Antagonism,	
	and Dualism	172

H.	Drugs, Receptors and Effects	174
	A. Different Types of Antagonism	174
	1. Chemical Antagonism	174
	2. Competitive Antagonism	175
	3. Noncompetitive Antagonism	175
	a) Metaffinoid Antagonism	175
	b) Metactoid Antagonism	175
	4. Functional Antagonism	176
	5. Physical Antagonism.	176
	B. Classification of Drugs in Families	177
	C. From Drug Administration to Effect: Drug-Receptor Interaction	
	Models: Experiments on Isolated Organs	178
111	A consisting functions	101
111.	Agonistic Interaction	101
	A. The Model of Agonism	101
	B. Intrinsic Activity in the Agonistic Formula	184
	C. Incoretical Concentration-Effect Curves. Sets of Curves Charac-	100
	terized by Parallel Shifting or by a Change in Slope	188
	D. Discussion of the Presuppositions in the Agonistic Model	191
IV.	Competitive Interaction	192
	A. The Model of Competitive Interaction	192
	B. Implications of the Model of Competitive Interaction	194
V.	Metactoid Interaction	200
	A. The Model of Metactoid Interaction	200
	B. Implications of the Model of Metactoid Interaction; the Concept	
	Receptor Reserve	204
VI.	Metaffinoid Interaction	207
	A. The Model of Metaffinoid Interaction	207
	B. Metaffinoid Interaction. Implications of Equation 55	212
	C. An Alternative Model for Metaffinoid Interaction	214
	D. A More Generalized Metaffinoid Model	216
vп	Functional Interaction	222
¥ 11.	A The Model of Functional Interaction	222
	1. The Original Model of Functional Interaction	222
	2 A New Model of Functional Interaction	222
	B Implications of the New Model of Functional Interaction	225
1 7777	D. Impleations of the New Woder of Pulletional Interaction	231
VIII.	Plural Allinities	234
IX.	Numerical Expressions of Intrinsic Activity and Affinity	237
	A. Calculation of α^{L} and pD_{2} .	238
	B. Calculation of pK_A^S and α^S	239
	C. Calculation of pA_2 -values	243
	D. Calculation of β'^{E} and pD_{2}'	244
	E. Affinity and Intrinsic Activity Values for Functional Antagonists	247
	F. pA_2 and pD_2' of a Dual (Competitive and Metactoid) Antagonist	247
	G. Conclusion	249
Refer	ences	249

.

CHAPTER 5	
A Critical Survey of Receptor Theories of Drug Action. D. MACKAY. With 7 Figure	es
I. Introduction	255
 II. The Mathematics of Drug-Receptor Interactions A. Interaction of One Drug with One Type of Receptor 1. The Drug-Receptor Reaction 2. Onset of Receptor Occupation 3. Offset of Receptor Occupation B. Interaction of Two Drugs with the Same Receptors 1. Competitive Interactions 2. Pseudo-Irreversible Interactions 3. Facilitated Displacement 4. Specific Noncompetitive Interaction C. Application of Equations for Receptor Occupation to Macroscopic Tissues D. Drug-Receptor Interactions and the Response 	257 257 257 258 259 260 260 260 261 261 261
 III. Occupation Theories of Drug Action A. The Direct Occupation Theory I. Clark's Original Theory Application of the Null Method to Studies of Drug Antagonism Intrinsic Activity, Efficacy, and the Pharmacologic Stimulus a) Intrinsic Activity b) Efficacy and the Pharmacologic Stimulus c) Intrinsic Efficacy f) General Application of the Null Method to the Analysis of Dose-Response Curves c) Estimation of Affinity Constants and Intrinsic Efficacies of Agonists A Discussion of the Direct Occupation Theory of Drug Action S) The Equilibrium Assumption Intrinsic Predback Model Intrinsic Predback Model 	263 263 264 264 266 267 268 270 271 272 274 276 277 280 284
 B. Agonists as Activators of Enzyme Systems	 285 285 287 289 291 292 295 295 296 298

D. The Allosteric Two-State Model	19
1. Basis of the Model	9
2. Application of the Null Method to the Allosteric Two-State Model,	
and Comparison of the Results with those Obtained on the Basis	
of the Direct Occupation Theory)1
IV. The Rate Theory of Drug Action)3
A. Agonist Action and the Rate Theory)3
1. The Kinetics of the Response)3
2. Specific Desensitisation)7
B. Antagonists and the Rate Theory)7
C. Discussion)8
V. A General Discussion of the Various Receptor Models	1
VI. A General Discussion of the Possible Uses of Receptor Models	2
Appendix. Glossary of Symbols	.4
References	6

CHAPTER 6

Drug-Receptor Inactivation: A New Kinetic Model. R.E. GOSSELIN. With 8 Figures
I. Introduction
II. Energetics of Receptor Activity
III. Models in Which Trigger Energy is Generated
IV. Models Involving Irreversible Alterations of Agonist or Receptor 326
V. A Receptor Inactivation Theory
VI. Stationary State Behavior with Single Agonists
VII. Transient State Behavior with Single Agonists
VIII. Stationary State Behavior with Agonist-Antagonist Mixtures 339
IX. Transient State Behavior with Agonist-Antagonist Mixtures
X. General Discussion
XI. Summary
Addendum A
Addendum B
Appendices: Glossary-Generalized Rate Equations for the Receptor In-
activation Model—"On" Effect—"Off" Effect—Analysis of Oscillations—
Receptor Interactions with Agonist-Antagonist Mixtures
References

CHAPTER 7

Kinetics of Drug-Receptor Interaction. C.A.M.VAN GINNEKEN. With 6 Figures	
I. Introduction	. 357
A. Drug-Receptor Interactions and Pharmacologic Effect.	. 357
B. The Receptor	. 359
II. Diffusion of Drug to Receptor	. 361
A. Free Diffusion of Drug	. 361
B. Effect of Intermolecular Forces on Diffusion	. 362

III. Intermolecular Forces in Drug-Receptor Reactions	. 365
IV. Kinetics of Drug-Receptor Association and Dissociation.	. 368
V. Possibilities for Measuring Rate Constants in Drug-Receptor Interaction	n 371
VI. Conformational Changes in the Drug-Receptor Complex	. 378
VII. Kinetics of Drug-Receptor Interaction, Including Conformationa Changes	1 . 381 1
Association and Dissociation	. 381
B. Conformational Changes that are Slow in Comparison with	1
Association and Dissociation	. 382
C. Conformational Changes and Irreversible Antagonists	. 384
VIII. Some Other Notions in Molecular Pharmacology	. 386
A. Desensitization and Fade	. 386
B. Receptor Reserve	. 388
D. Allosteric Models	. 389
IX. Activation Parameters	. 389
A. Arrhenius' Equation and Transition-State Theory	. 389
B. Energetics of Drug-Receptor Interaction	. 392
Appendix	. 397
References	. 407
Conclusion. J.M. VAN ROSSUM. With 3 Figures	. 413
Author Index	. 419
Subject Index	. 433