Section I: Concepts of Drug Resistance

CHAPTER 1

Clinical Setting. J. M. WHITEHOUSE

Α.	Introduction	3
В.	Resistance – A Clinical Phenomenon?	4
С.	Disease Assessment	6
D.	Drug Selection	9
E.	Measurement of Response	11
F.	Can Resistance be Quantified Clinically?	13
G.	Factors Influencing Changes in Tumour Volume	13
	I. Heterogeneous Target Populations of Tumour Cells	13
	II. Changes in Histology	14
	III. Second Malignancy	15
	IV. Miscellaneous Factors Contributing to Tumour Volume	15
H.	Influence of Clinically Determined Drug Resistance on Management .	16
	I. Resistance and Toxicity	16
	II. Resistance and Survival	18
Ref	Terences	19

CHAPTER 2

Experimental Setting. J. F. HENDERSON

A.	Introduction														23
	Origins of Resistance														
	I. Changes in the Tumor														23
	1. Nongenetic Origins							•							24
	2. Genetic Origins .													•	25
	II. Changes in the Host.														26
	III. Changes in Pharmacol	og	ica	11	Pa	rar	ne	ter	°S						27
	IV. Experimental Systems	•											•		27
С.	Mechanisms of Resistance														27
	I. Differences in Drug Co	on	cei	ntr	ati	ior	1		•						28
	1. Drug Uptake														28
	2. Nucleotide Formati	on	ι.												28
	3. Drug Catabolism .														29

	II. Differences in Drug-Target Interaction	30
	1. Drug-Enzyme Binding	30
	2. Drug-Cell Interaction	
	3. Metabolite Concentrations	31
	III. Differences in Importance of Biochemical Target	31
	1. Recovery from Drug Effects	31
	2. Alternative Pathways	31
	3. Concentration of Target	32
	IV. Experimental Systems	32
D.	Chemotherapy of Resistant Tumors	34
	I. Cross-Resistance	34
	II. Collateral Sensitivity.	35
	III. Circumvention of Resistance	35

Section II: Modification of Host-Tumor Interaction

CHAPTER 3

,.

Drug Disposition and Pharmacology. J. G. McVIE

A.	Introduction													39
Β.	Drug Absorption .													41
С.	Distribution													47
D.	Metabolism													50
E.	Renal Excretion .													53
F.	Dose													54
G.	Schedule Dependence	e						•						56
H.	Drug Interactions .													59
J.	Conclusion	•					•	•	•				•	61
Ref	erences		•	•										61

CHAPTER 4

Immunological Changes. H. FUJI. With 3 Figures

Α.	Introduction	67
В.	Tumor-Associated Antigens	67
С.	Altered Transplantability of Drug-Resistant Tumor Sublines	69
	I. Tumor Transplantation in Unimmunized Animals	69
	II. Tumor Transplantation in Preimmunized Animals	71
	III. Adoptive Transfer of Transplantation Immunity.	73
D.	Immunological Changes in Drug-Resistant Tumor Sublines Defined	
	by Antibodies	73
	I. Changes in Tumor Antigenicity Defined by Antisera	73
	II. Changes in Tumor Antigenicity Defined by Monoclonal Antibody	76
E.	Cellular Immune Responses Against Drug-Resistant Tumor Sublines .	78
	I. Antibody-Forming Cell Responses	78
	II. Cell-Mediated Cytotoxic Responses	

F.	Other Immune	oł	oio	lo	gic	al	С	ha	ra	cte	ris	stic	s a	an	d 1	Po	ssi	ble	e N	Лe	ch	an	isr	ns	ol	
	Immunologica	ıl	Ch	aı	nge	es																				79
G.	Conclusions																						•			82
Re	ferences	•	•				•	•	•		•	•		•						•				•	•	83

CHAPTER 5

The Molecular Basis of Genetically Acquired Resistance to Purine Analogues in Cultured Mammalian Cells. J. BRENNAND and C. T. CASKEY

A. Introduction	. 89
B. The HPRT Enzyme	. 89
C. Biochemical Basis of Drug Resistance	. 90
D. Drug Resistance as a Consequence of Mutation Within the HPRT Gen	e 91
I. Phenotypic Variation Resulting from Non-mutational Events .	. 91
II E '1 that Days Desistance Desistance Manual Materia Within the	
II. Evidence that Drug Resistance Results from Mutation Within th	e
HPRT Gene	
	. 93
HPRT Gene	. 93 . 94

Section III: Cellular Aspects

CHAPTER 6

Cell Cycle Perturbation Effects. B. DREWINKO and B. BARLOGIE. With 14 Figu	ires
A. Introduction	101
I. General	
II. Proliferating and Quiescent Cells	
III. Age-Dependent Response	
IV. Cell Synchronization	
V. Cell Cycle Perturbation	
VI. In Vitro Systems	
VII. Cell Death	
VIII. Cell Cycle Traverse Rate-Dependent Lethality	
B. Materials and Methods	106
C. Results	107
I. Proliferating Versus Nonproliferating Cells	
II. Age-Dependent Survival Response	
III. Cell Cycle Perturbation	
1. Asynchronous Cell Populations	
2. Synchronized Cells	
IV. Protection of Cell Kill by Inhibition of Cell Cycle Traverse	
D. Discussion	
References	136

XVI

CHAPTER 7

Tumour Resistance and the Phenomenon of Inflammatory-Cell Infiltration M. MOORE. With 2 Figures

A. Introduction		
I. Heterogeneity of Tumour Cells		143
II. Intratumour Lymphoreticular Cells: Biological Implications		144
III. Methodological Approaches		145
B. Characterization of Intratumour Host-Cells		
I. Total Host-Cell Component		147
II. Criteria for the Identification of Leucocyte Populations and		
Subpopulations		148
C. Intratumour Leucocytes of Experimental and Human Neoplasms		
Descriptive Studies		151
I. Preliminary Considerations		151
II. Nature of Cells Infiltrating Experimental Neoplasms:		
Biological Correlates		151
III. Nature of Cells Infiltrating Human Neoplasms:		
Clinicopathological Correlates	• •	156
IV. Factors Which Determine Leucocyte Infiltration of Tumours	3.	161
D. Effector Functions of Intratumour Leucocytes:		
Experimental Neoplasms		162
I. Systemic Effector Mechanisms		162
II. Macrophage Function		166
III. T-Cell Function.		168
IV. Natural Killer Function		169
V. Antibody-Dependent Cellular Cytotoxicity		170
E. Effector Functions of Intratumour Leucocytes: Human Neoplass	ns	171
I. Macrophage Function		171
II. T-Cell Function		171
III. Natural Killer Function		174
F. Limitations of In Vitro Functional Data		175
G. Implications for Therapy		176
References.		

CHAPTER 8

Flow Cytometric Methods for Studying Enzyme Activity in Populations of Individual Cells. J. V. WATSON. With 12 Figures

A. Introduc	tion .										•				187
B. Principle	s of Flo	w Cyt	ome	try .											187
C. Enzyme															
D. Enzyme	Measure	ements	: Usi	ng I	Fluor	oger	nic S	Subs	tra	tes					191
I. Ass	ays with	Single	e Sul	ostra	ites .										191
II. Ass	ays Usin	g Two	o Sul	ostra	ites S	Simu	ltan	eous	sly						200
E. Conclusi	ons .														201
References.															202

CHAPTER 9

Chromosome Studies. D. SCOTT. With 17 Figures

A. I	Introduction									205
B. (Chromosome Constitution and Resistance .									205
	I. Derivation of Drug-Resistant Cells									205
J	II. Resistance to Various Classes of Antitum	ιοι	ır J	Dri	ugs	5				213
	1. Purine Analogues									213
	2. Pyrimidine Analogues									216
	3. Antifolates									217
	4. Alkylating Agents									228
	5. Platinum Compounds	•								229
	6. Antibiotics									
	7. Vinca Alkaloids									232
C. 1	Resistance to Induced Chromosome Damage	÷.								233
	Summary									
	erences									

CHAPTER 10

Alterations of Drug Transport. G. J. GOLDENBERG and A. BEGLEITER

Introduction	. 241
Mechanism of Drug Transport	. 241
I. Characteristics of Passive Diffusion and Mediated Transport .	. 241
II. Kinetics of Membrane Transport	. 242
III. Drug Uptake by Multiple Mechanisms	. 244
IV. Evaluation of Drug Efflux	. 245
Antitumor Drug Resistance Due to Defects in Membrane Transport	245
I. Alkylating Agents	. 245
1. Nitrogen Mustard	. 245
2. Melphalan	. 250
3. Cyclophosphamide	. 255
5. Chlorambucil	. 257
6. Busulfan	. 258
7. Procarbazine	. 258
8. Hexamethylmelamine and Pentamethylmelamine	. 258
II. Antimetabolites	. 259
1. Methotrexate	. 259
2. 6-Mercaptopurine and 6-Thioguanine	. 263
3. Fluorouracil	. 265
4. Arabinosylcytosine and Arabinosyladenine	. 266
III. Antibiotics	. 267
1. Actinomycin D	. 267
2. Daunorubicin and Doxorubicin	. 270
3. Bleomycin	. 276
4. Mitomycin C	. 276
	Mechanism of Drug Transport

IV. Alkaloids					•				•	277
1. Vinca Alkaloids										277
2. Colchicine										280
V. Hormones										282
1. Glucocorticoids						•				282
2. Estrogens						•				283
3. Androgens and Progestins				•					•	283
D. Future Considerations										284
References										286

Cell Hybridisation. J. M. BOYLE. With 5 Figures

A. Introduction \ldots	299
B. Cell Fusion In Vivo	801
I. Occurrence of Multinucleate Cells	301
II. Experimental Production of Hybrids In Vivo	304
III. Modified Phenotypes of Hybrids Induced In Vivo	
C. Use of Drug Resistance for the Selection of Hybrid Clones In Vitro	306
D. Expression of Drug Resistance in Hybrid Cells	
I. Dominance and Complementation	310
II. Gene Dosage and Functional Hemizygosity	311
III. Multifunctional Enzymes	
IV. Steroid Resistance and Enzymic Induction by Hormones 3	314
V. Segregation of Resistance	315
VI. Gene Activation	318
E. Radiation Responses of Hybrid Cells	
I. Sensitivity to Ionising Radiation and Ultraviolet Light	
II. Rescue of Genes from Lethally Irradiated Cells	
F. Conclusions: Possible Therapeutic Implications of Cell Hybridisation	321
References	322

Section IV: Modification of Tumor Biochemistry

CHAPTER 12

Drug Resistance and DNA Repair. M. Fox. With 4 Figures

Α.	A. Introduction	•	 335
B.	B. Mechanisms of DNA Repair		 336
	I. Excision Repair		 336
	1. Base Modification		 337
	2. Enzymatic Excision of Base Damage		 337
	3. Repair of Base Damage		 337

4. Nucleotide Excision and Repair	338
5. Influence of Chromatin Structure on DNA Excision Repair	340
II. DNA Synthesis on a Template Containing Unexcised DNA Lesions	342
C. The Relationship Between DNA Repair and Cellular Sensitivity	345
I. Alkylating Agents	345
II. Platinum Compounds	
III. Mitomycin C	355
IV. Bleomycin	356
D. Cell-Cycle Perturbations and Their Possible Relationships to DNA	
Repair	358
E. Attempts to Develop Resistance to DNA-Damaging Drugs in Cultured	
Cell Lines In Vitro	359
F. Conclusions	361
References	362

Cyclic AMP and Prostaglandins. M. J. TISDALE. With 5 Figures

A. Cyclic AMP		. 3	71
I. Cyclic AMP and Neoplasia		. 3	71
II. Tumour Growth Inhibition by Cyclic AMP and Derivatives .			
III. Role of Cyclic AMP in Regression of Hormone-Dependent			
Mammary Tumours		. 3	73
IV. Role of Cyclic AMP in Growth Inhibition by the Antitumour			
Alkylating Agents		. 3	7.4
1. Effect on Cyclic AMP Phosphodiesterase		. 3	76
2. Effect on Specific Cyclic-AMP-Binding Proteins.		. 3	79
3. Alterations in Protein Kinase Activity		. 3	81
4. Possible Role of Cyclic AMP in the Cytotoxic Action of			
Alkylating Agents	. ,	. 3	82
V. Effect of Other Antitumour Agents on the Cyclic Nucleotide			
System		. 3	82
B. Prostaglandins		. 3	83
C. Conclusion		. 3	85
References		. 3	85

CHAPTER 14

Properties of Mitochondria. A. K. BELOUSOVA. With 4 Figures

A.	Introduction	391
B.	Damage of Mitochondrial Membranes by Alkylating Agents	391
С.	The Structure and Functions of Energy-Coupling Complexes in	
	Mitochondria.	392
D.	Search for Correlations Between Cell Sensitivity or Resistance to	
	Alkylating Agents and Functional State of Mitochondrial Membranes	394
Rei	ferences	400

Mechanism of "Resistance" Towards Specific Drug Groups. T. A. CONNORS. With 10 Figures

 B. Mechanisms of Cytotoxicity and Antitumour Action	A.	Mechanisms of Alkylation			404
 D. Patterns of Resistance E. Mechanisms of Resistance I. Resistance Through Decreased Cellular Uptake II. Resistance by Inhibition of the Activation of Prodrugs III. Resistance by Deactivation of Reactive Alkylating Agents IV. Resistance by Interaction with Non-essential Nucleophiles F. Conclusions 	B.	Mechanisms of Cytotoxicity and Antitumour Action			406
 E. Mechanisms of Resistance I. Resistance Through Decreased Cellular Uptake II. Resistance by Inhibition of the Activation of Prodrugs III. Resistance by Deactivation of Reactive Alkylating Agents IV. Resistance by Interaction with Non-essential Nucleophiles F. Conclusions 	C.	Selectivity of Antitumour Action of the Alkylating Agents			406
I. Resistance Through Decreased Cellular Uptake	D.	Patterns of Resistance			407
 II. Resistance by Inhibition of the Activation of Prodrugs III. Resistance by Deactivation of Reactive Alkylating Agents IV. Resistance by Interaction with Non-essential Nucleophiles F. Conclusions	E.	Mechanisms of Resistance			408
III. Resistance by Deactivation of Reactive Alkylating AgentsIV. Resistance by Interaction with Non-essential NucleophilesF. Conclusions					
IV. Resistance by Interaction with Non-essential Nucleophiles F. Conclusions		II. Resistance by Inhibition of the Activation of Prodrugs			413
F. Conclusions		III. Resistance by Deactivation of Reactive Alkylating Agents	•		417
		IV. Resistance by Interaction with Non-essential Nucleophiles	•		418
References	F.	Conclusions			420
	Ref	ferences		•	421

CHAPTER 16

Nit	rosoureas. K. D. Tew and P. S. SCHEIN
Α.	Pharmacology
B.	Mechanisms of Drug Resistance
С.	Significance of Molecular Considerations
D.	Monoadducts and Cross-Linking
E.	Interference with the DNA Repair Process
F.	Subnucleosomal Nitrosourea Binding
G.	Effects on Pyridine Nucleotides
H.	Modulation of Drug Effect with Steroids and Other Transcriptional
	Modifiers
J.	Overcoming Resistance to Alkylating Agents with Nitrosoureas 433
Κ.	Clinical Therapeutic Activity
L.	Conclusions
Rei	Yerences

Section V: Antimetabolites

CHAPTER 17

Antipurines. D. M. TIDD. With 6 Figures

A.	Introduction							445
Β.	8-Azaguanine.							449
	I. Metabolism and Mechanism of Action							450
	II. Resistance						· ·	451
C.	6-Mercaptopurine and 6-Thioguanine							457
	I. Metabolism and Mechanism of Action							457
	II. Resistance							459

D. 6-Methylthioinosine	66
I. Metabolism and Mechanism of Action	66
II. Resistance	
E. 9- β -D-Arabinofuranosyladenine	68
I. Metabolism and Mechanism of Action	
II. Resistance	
F. Adenine and Adenosine Antipurines	
I. Metabolism	70
II. Resistance	71
G. Circumvention of Resistance	71
I. Derivatives Metabolized by Alternative Routes	72
II. Potentiation by a Second Agent	73
III. Protected Slow-Release Depot Derivatives	74
IV. Coadministration of Inhibitors of Degradative Enzymes 4	75
V. Molecular Alteration to Prevent Catabolism but not Anabolism 4	76
VI. Phosphorylated "Prodrug" Derivatives of Antipurine Nucleotides 4	78
H. Conclusion	82
References	83

Ribofuranose-containing Analogues of Uridine and Cytidine

A.D. WELCH and N. K. AHMED. With 1 Figure

Α.	Introduction																				495
B.	6-Azauridine				•																495
	I. Another Mechanism	ı fe	or	Re	esi	sta	nc	e	to	6-	Az	au	iri	dir	ne				•		499
C.	5-Azacytidine																				500
D.	Pseudoisocytidine																				503
E.	3-Deazauridine							•		•							•	•	•		503
F.	Concluding Statement							•													507
Ref	erences	•	•	•		•		•					•	•					•	•	508

CHAPTER 19

5-Halogenated Pyrimidines and Their Nucleosides

J. A. HOUGHTON and P. J. HOUGTHON. With 2 Figures

A.	Introduction	5
В.	Metabolism and Mechanism of Action	5
C.	Development and Stability	7
D.	Transport	9
E.	Decreased Lethal Synthesis	0
	I. Thymidine Kinase	0
	II. Uridine Phosphorylase; Uridine Kinase	1
	III. Orotate Phosphoribosyltransferase; Orotidine-5'-Monophosphate	
	Decarboxylase	2

F. Changes in Enzyme Characteristics	523
I. Altered (Mutated) Enzymes	
II. Increased Enzyme Activities	
G. Cross-Resistance and Collateral Sensitivity	
H. Tolerance	
J. Natural Resistance	
I. Formation of Nucleotides	
II. Formation of 5-Fluoro-2'-Deoxyuridylate	
III. Accumulation of 2'-Deoxyuridylate	
IV. Concentration of $N^5 N^{10}$ -Methylenetetrahydrofolate	
V. Enzyme Activities	
VI. Catabolism	
K. Overcoming Resistance	
I. Metabolic Modulation	
1. Naturally Occurring Pyrimidine Metabolites	
2. Purines and Purine Analogues	
3. Methotrexate	
4. Inhibitors of Pyrimidine Biosynthesis de Novo	
II. Congener Synthesis	
1. Metabolic Activation	
2. Decreased Phosphorolytic Cleavage	
3. Latentiation	
4. Increased Uptake	
L. Conclusions	
References	538

Resistance to Amino Acid Analogs. J. R. UREN. With 2 Figures

A.	Definitions					•									551
В.	Natural Resistance														551
C.	Acquired and Cross-Resistance														557
	I. Glutamine Antagonists									•					557
	1. Biochemistry														557
	2. Resistance									•					558
	II. Aspartic Acid Antagonists				•	•	• •	•	•			•			559
	1. Biochemistry														
	2. Resistance	•	•			•					•			•	560
	III. Tyrosine Antagonists	•	•	•	•	•						•		•	561
	1. Biochemistry	•		•	•	•						•		•	561
	2. Resistance	•		•	•	•	• •						•		561
	IV. Asparagine Antagonists		•						•				•		561
	1. Biochemistry		•		•	•							•	•	561
	2. Resistance			•	•				•				•		562
	V. General Amino Acid Antagonists												•		562
	1. Biochemistry			•	•	•						•	•	•	562
	2. Resistance						•			•					563

D. Summary						•		•	•	•										563
References	•		•	•	•		•	•			•	•	•	•	•	•	•			564

XXIII

CHAPTER 21

Alkaloids. W. T. BECK. With 6 Figures

	Introduction	569
B.	Cellular Pharmacology and Biochemistry of the Vinca and Colchicum	
	Alkaloids	571
	I. Mechanisms of Alkaloid Accumulation by Cells	
	II. Effects of Alkaloids on Cellular Functions	575
	1. Membrane Transport	575
	2. Other Membrane-Related Actions	577
	3. Cytotoxic Lesions	578
C.	Manifestations of Resistance to the Alkaloids	579
	I. Resistance and Cross-Resistance Characteristics of Alkaloid-	
	Insensitive Cells	579
	II. Pharmacological Bases of Alkaloid Resistance	583
	1. Decreased Uptake of Drug	585
	2. Diminished Retention of Drug	587
	3. Role of Calcium	594
	III. Biochemical Alterations Associated with Alkaloid Resistance	595
	1. Membrane Alterations	595
	2. Cytoplasmic Alterations	600
	3. Relationship Between Biochemical Changes and Alkaloid	
	Resistance	601
	IV. Genetics of Alkaloid Resistance	602
D.	Summary and Future Considerations	605
Ref	Serences	606

Section VI: Antifolates

CHAPTER 22

Folate Antagonists. J. R. BERTINO. With 2 Figures

A.	Introduction	615
B.	Intrinsic or Natural Resistance to Methotrexate and Other Folate	
	Antagonists	615
C.	Acquired Resistance to Folate Antagonists	618
	I. Gene Amplification and Elevation of Dihydrofolate Reductase .	619
	1. Organization of the Dihydrofolate Reductase Gene	620
	2. Gene Amplification and Resistance to Other Drugs	621
	II. Impaired Transport as a Mechanism of Resistance to Methotrexate	621
	III. Altered Dihydrofolate Reductase as a Mechanism of Methotrexate	
	Resistance	622

D. Collateral Sensitivity Between Methotrexate-Resistant Cells and Other	
Agents	623
E. Overcoming Resistance to Folate Antagonists	623
I. Agents Promoting Methotrexate Transport into Resistant Cells or	
Tumors	623
II. Effects of Dihydrofolate Reductase or Thymidylate Synthetase	
Inhibitors on Methotrexate-Resistant Cells	625
III. Methotrexate-Resistant Cells with an Altered Dihydrofolate	
Reductase as a Target for Inhibitors	625
F. Clinical Studies	625
References	627

Steroids. M. M. IP. With 4 Figures

I. Structure.633II. Mechanism of Action of Steroid Hormones634B. Possible Mechanisms of Steroid Resistance637C. S49 Lymphoma and WEHI-7 Thymoma Murine Cell Lines640D. The P1798 Mouse Lymphosarcoma644E. Human Leukemia648F. Breast Cancer653I. Estrogen Receptors653II. Estrogen and Progesterone Receptors653III. Estrogen Receptor and Prognosis657V. Estrogen Receptor and Response to Chemotherapy658VI. Current and Future Directions in Research659G. Conclusions661	A.	Introduction		•	•	•	•	633
B. Possible Mechanisms of Steroid Resistance 637 C. S49 Lymphoma and WEHI-7 Thymoma Murine Cell Lines 640 D. The P1798 Mouse Lymphosarcoma 644 E. Human Leukemia 648 F. Breast Cancer 653 I. Estrogen Receptors 653 II. Estrogen and Progesterone Receptors 653 III. Estrogen Receptor and Prognosis 657 V. Estrogen Receptor and Response to Chemotherapy 658 VI. Current and Future Directions in Research 659 G. Conclusions 660		I. Structure						633
C. S49 Lymphoma and WEHI-7 Thymoma Murine Cell Lines640D. The P1798 Mouse Lymphosarcoma644E. Human Leukemia648F. Breast Cancer653I. Estrogen Receptors653II. Estrogen and Progesterone Receptors653III. Estrogen Resistance653IV. Estrogen Receptor and Prognosis657V. Estrogen Receptor and Response to Chemotherapy658VI. Current and Future Directions in Research659G. Conclusions660								
D. The P1798 Mouse Lymphosarcoma 644 E. Human Leukemia 648 F. Breast Cancer 653 I. Estrogen Receptors 653 II. Estrogen and Progesterone Receptors 653 III. Estrogen Resistance 656 IV. Estrogen Receptor and Prognosis 657 V. Estrogen Receptor and Response to Chemotherapy 658 VI. Current and Future Directions in Research 659 G. Conclusions 660	Β.	Possible Mechanisms of Steroid Resistance						637
E. Human Leukemia 648 F. Breast Cancer 653 I. Estrogen Receptors 653 II. Estrogen and Progesterone Receptors 653 III. Estrogen Resistance 653 IV. Estrogen Receptor and Prognosis 657 V. Estrogen Receptor and Response to Chemotherapy 658 VI. Current and Future Directions in Research 659 G. Conclusions 660	C.	S49 Lymphoma and WEHI-7 Thymoma Murine Cell Lines						640
F. Breast Cancer653I. Estrogen Receptors653II. Estrogen and Progesterone Receptors653III. Estrogen Resistance656IV. Estrogen Receptor and Prognosis657V. Estrogen Receptor and Response to Chemotherapy658VI. Current and Future Directions in Research659G. Conclusions660	D.	The P1798 Mouse Lymphosarcoma	•	•				644
I. Estrogen Receptors653II. Estrogen and Progesterone Receptors653III. Estrogen Resistance656IV. Estrogen Receptor and Prognosis657V. Estrogen Receptor and Response to Chemotherapy658VI. Current and Future Directions in Research659G. Conclusions660	E.	Human Leukemia						648
II. Estrogen and Progesterone Receptors 653 III. Estrogen Resistance 656 IV. Estrogen Receptor and Prognosis 657 V. Estrogen Receptor and Response to Chemotherapy 658 VI. Current and Future Directions in Research 659 G. Conclusions 660	F.	Breast Cancer						653
III. Estrogen Resistance656IV. Estrogen Receptor and Prognosis657V. Estrogen Receptor and Response to Chemotherapy658VI. Current and Future Directions in Research659G. Conclusions660		I. Estrogen Receptors						653
 IV. Estrogen Receptor and Prognosis		II. Estrogen and Progesterone Receptors						653
V. Estrogen Receptor and Response to Chemotherapy		III. Estrogen Resistance						656
VI. Current and Future Directions in Research		IV. Estrogen Receptor and Prognosis						657
G. Conclusions		V. Estrogen Receptor and Response to Chemotherapy .						658
		VI. Current and Future Directions in Research						659
References	G.	Conclusions						660
	Rei	ferences	٠	•	•			661

Section VII: Modification of Resistance

CHAPTER 24

Collateral Sensitivity and Cross-Resistance. B. T. HILL

Α.	Introduction	673
B.	Definition of Terms	674
C.	Incidence of Collateral Sensitivity and Cross-Resistance in	
	Experimental Animal Tumours	675
	I. In Vivo Studies	675
	II. In Vitro Studies	680
D.	Mechanisms Implicated in Determining Collateral Sensitivity or	
	Cross-Resistance	681

	685
r	
	686
	689
	692
•	692
	•

Subject Index																										699
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	