Contents

Ack	face knowle ation	dgments	XV XX XXX	
1	Multiphase Reactors: Types, Characteristics, and Uses A. Gianetto			
	1.1	Introduction	1	
	1.2	Reactors with Moving Solids		
	1.2	1.2.1 Stirred Slurry Reactors	5	
		1.2.2 Bubbling Slurry Column	2	
		1.2.3 Fluidized Slurry Reactor	3	
		1.2.4 Cocurrent Upflow Reactor with Fluidized Solids	2 2 2 3 4	
	1.3	Reactors with Fixed Beds of Solids	4	
		1.3.1 Submerged Fixed Bed Reactor with Gas Bubbling	4	
		1.3.2 Trickle Bed Reactor	5	
	1.4	Criteria for Choosing Specific Types of Multiphase		
		Reactors	6	
	1.5	Industrial Applications of Multiphase Reactors	10	
	1.6	Fundamental Phenomena in Multiphase Reactors	14	
	1.7	Design Criteria for Mechanically Stirred Reactors	16	
	1.8	Design Criteria for Fixed-Bed Reactors	19	
	Nota		27	
	Refer	rences	28	
2		Transfer Coupled with Chemical Reaction		
		Charpentier	32	
	2.1	Introduction	32	
	2.2	Analysis of the Gas-Liquid Reaction System	33	
		2.2.1 Reactor Equations	34 38	
		2.2.2 Interfacial Condition 2.2.3 Use of the Hatta Number	40	
	2.3	Mass Transfer in Gas-Liquid Reactors	44	
	2.3	2.3.1 Physical Absorption	45	
		2.3.2 Mass Transfer with Chemical Reaction	48	
		2.3.4 Desorption	65	
		2.3.5 Thermal Effects in Gas Absorption	69	
		2.3.6 Simultaneous Absorption of Two Reacting Gases	73	
	Nota		76	
	Refer	rences	79	

3	Solub	ility and I	Diffusivity of Gases in Liquids		
	JC. Charpentier				
	3.1	Introduction			
	3.2 Solubility of Gases in Liquids				
	_	3.2.1	Solubility in Nonelectrolytes	82	
		3.2.2	Solubility in Electrolytes	89	
	3.3		rity in Liquids	91	
			Diffusivity in Nonelectrolytes	91	
		3.3.2		96	
	Notat			98	
	Refer	ences		100	
4	Meas	urement :	of Gas-Liquid Parameters JC. Charpentier	104	
	4.1	Physica	al Techniques	104	
		4.1.1	Gas Holdup	104	
		4.1.2	Bubble Size	106	
		4.1.3	Interfacial Area	106	
		4.1.4		107	
	4.2		al Techniques	109	
		4.2.1	Determination of the Volumetric Mass Transfer		
			Coefficient	109	
		4.2.2	Determination of the Volumetric Coefficient,		
			using a Slow Irreversible Reaction	109	
		4.2.3	Determination of the Volumetric Coefficient		
			using an Instantaneous Irreversible Chemical		
			Reaction	111	
		4.2.4	Determination of the Gas-Liquid Interfacial Area	112	
		4.2.5	Determination of the Gas Side Volumetric		
			Coefficient	114	
		4.2.6	Simultaneous Measurement of Volumetric Mass		
			Transfer Coefficients and Interfacial Area	116	
		4.2.7	Laboratory Equipment for Determination		
			of the Physicochemical Parameters		
			by Chemical Methods	118	
		4.2.8	Application to the Kinetics of the Oxidation		
			of Aqueous Sodium Sulphite Solutions	125	
		4.2.9	Limits of the Chemical Technique Introduced		
			by Inhibited Bubble Coalescence	133	
		4.2.10	Application of the Chemical Technique to Organic		
			Liquid Phases	136	
	4.3	Mass T	ransfer Data for Chemical and Purely		
		Physica	al Processes	138	
		Notatio	n	144	
		Referer	nces	149	

CONTENTS

5	Simul	lation of I	Industrial and Pilot Scale Gas-Liquid	
	Abso	rbers by I	Laboratory Scale Models JC. Charpentier	152
	5.1	Criteria	for Simulation	152
	5.2	Practica	al Selection of a Laboratory Model to Simulate	
		an Indu	ıstrial Absorber	154
		5.2.1	Absorption and Reaction in the Liquid Film	
			with a Pure Gas	154
		5.2.2	Absorption and Reaction in the Liquid Film	
			with a Dilute Gas Solute	156
		5.2.3	Absorption and Complete Reaction with a Dilute	
			Gas Solute	157
	5.3	Practica	al Examples of Simulation	157
		5.3.1	Simulation of a Point in a Packed Column	
			by a Stirred Cell	157
		5.3.2	Simulation of a Packed Column Absorber	
			by a String of Spheres (Uses of an Integral Model)	159
		5.3.3	Simulation of a Pilot Scale Venturi Jet Scrubber	
			by a Laminar Jet	162
	Notat			169
	Refer	ences		172
6	Page	tion withi	n Porous Catalysts—Effectiveness Factors	
U		Silveston	ii Folous Catalysts—Eliectivelless Factors	173
	6.1	Introdu	ction	173
	6.2		quence of Transport Resistance in Porous	.,,
	0.2	Solids	defice of fransport resistance in Foreus	174
		6.2.1	Model for Concentration Change	174
		6.2.2	Formulation of Mathematical Relationships	176
		6.2.3	Concept of an Effectiveness Factor	180
		6.2.4	Effectiveness Factors for Non-First-Order	
		0.2.4	Reactions	185
		6.2.5	Measured Effectiveness Factors	192
		6.2.6	Falsification of Kinetic Parameters	192
		6.2.7	Effects of Internal Diffusion on Selectivity	197
		6.2.8	Tests for the Significance of Internal Diffusion	204
		6.2.9	Non-Isothermal Systems	205
			Volume Change Reactions	207
	6.3		Effectiveness Factors and Observable	
		Thiele I	Moduli	207
		6.3.1	Overall Effectiveness Factors	207
		6.3.2	Extension to Three-Phase Systems	209
		6.3.3	Contacting Effectiveness	211
		6.3.4	Influence of Wetting	211
		6.3.5	Observable Thiele Modulus	212

	6.4		veness Factors with Nonsymmetrical External	045
			ntrations	215
	6.5		veness Factors with Gas-filled or Partially	010
		Filled F		216
	6.6		Measurement in Multiphase Systems	217
		6.6.1	Requirements for Kinetics Studies in Slurry Reactors	217
		6.6.2	Tests for Significance of Transport in Slurry	21/
		0.0.2	Reactors	218
		6.6.3	Interpretation of Data in the Presence	
			of Diffusional Interference	218
	Notat	ion		219
	Refer	ences		224
7	Effort	iva Diffi	usivity and Structure of Porous Catalysts	
•		Silveston		228
	7.1		mental Measurements of Effective Diffusivity	228
	7.1	7.1.1	Steady State Transport	229
		7.1.2	Pulse Method	231
	7.2		ure of Porous Solids	236
	7.3		tructure Models and Effective Diffusivity	
	7.0	Estima	•	240
		7.3.1	Pore Bundle Models	240
		7.3.2	Grain Models	243
		7.3.3	Grain Models with Porous Particles	244
		7.3.4		246
		7.3.5		247
		7.3.6	Random Pore Model	248
	7.4	Experi	mental Tortuosity	250
	Notat	ion .	·	252
	Refer	ences		255
8	Hydro	dynamic	es and Hydrodynamic Models of Fixed Bed	
•	React	-	H. Hofmann	257
	8.1	Introduction		
	8.2	Hydrodynamic Characteristics of Three Phase		
	0.2	•	tic Fixed Bed Reactors	258
		8.2.1	Mode of Operation and Flow Regimes	258
		8.2.2	Pressure Drop	260
		8.2.3	Degree of Wetting of the Catalyst	
			and Hydrodynamics	263
		8.2.4	Holdup of the Phases and Dispersion	
			as Characteristics of Hydrodynamics	266

CONTENTS

		8.2.5 Hydrodynamic Effects on Mass Transfer	269
	8.3	Hydrodynamic Models and Their Application	273
		8.3.1 Limitations Imposed by Hydrodynamics	273
		8.3.2 Use of Models	273
		8.3.3 Continuum Models	274
		8.3.4 Other Models	281
	8.4	Summary	281
	Notati	on ·	282
	Refere	nces	285
9	Mass	Transfer in Fixed Bed Reactors JC. Charpentier	289
	9.1	Countercurrent Packed Columns	289
	9.2	Countercurrent Packed Bubble Columns	297
	9.3	Cocurrent Packed Columns	297
		9.3.1 Hydrodynamics	299
		9.3.2 Gas-Liquid Mass Transfer	307
		9.3.3 Liquid-Solid Mass Transfer	329
	Notati		342 346
	Refere	ences	340
10	-	-Solid Contacting Effectiveness in Trickle Bed Reactors	050
	J. M.		350
	10.1	Introduction	350
	10.2	, ,	350
	10.3	•	
		Conditions	352
		10.3.1 Particle Effectiveness Factors, Slab Geometry	25.0
		(f = 0.5)	352
		10.3.2 Overall Effectiveness Factor, Slab Geometry	355
	10.4	(f = 0.5) Weighting Factor Models for Overall Effectiveness	355
	10.4	Factors in Trickle Beds	357
			357
		10.4.1 Slab Geometry 10.4.2 Spherical Geometry	359
		10.4.3 Cubical Model	361
	10.5	Comparison of Effectiveness Factor Models	362
	10.6	Prediction of Reaction Rates with Partial Wetting	363
	10.7	Estimation of Wetting Efficiencies	368
	10.7	Criterion for the Importance of Partial Wetting	369
		Siltonon for the importance of Fartial 440thing	~~~
		·	371
	10.8 10.9 Notati	Rivulet Distribution	371 371

X CONTENTS

11	Heat 1	Fransfer in Fixed Bed Three Phase Reactors	
	G. Bal	ldi	375
	11.1	Introduction	375
	11.2	Heat Transport Processes	375
		11.2.1 Intraparticle Heat Transport	376
		11.2.2 Interphase Heat Transport	380
		11.2.3 Interparticle Heat Transfer	383
	11.3	Temperature Control in Three Phase Reactors	387
		11.3.1 Thermal Instability	387
		11.3.2 Temperature Control	391
	Notati	on	392
	Refere	ences	395
12	Scale	Up Strategies for Trickle Bed Reactors A. Gianetto	398
	12.1		398
	12.2	Experimental Reactors	398
		12.2.1 Multisphere Reactor	398
		12.2.2 Recycle Reactors	399
		12.2.3 Differential Reactors	401
	12.3	Use of Models	402
	12.4	Phenomenological Considerations in Model	
		Development	406
		12.4.1 End Effects	407
		12.4.2 Axial Dispersion	407
		12.4.3 Homogeneous Reactions	408
		12.4.4 Interphase Mass Transfer	409
		12.4.5 Incomplete Wetting of the Catalyst	413
		12.4.6 Thermal Gradients	421
	12.5	Recommendations	425
	Notati	on	425
	Refere	ences	428
13	Hydro	dynamics and Mass Transfer in Bubble Columns	
	H. Ho	fmann	432
	13.1	Industrial Application and Technological Aspects	432
	13.2	Hydrodynamics	433
		13.2.1 Flow Regimes	433
		13.2.2 Pressure Drop	433
		13.2.3 Hold Up and Dispersion	439
		13.2.4 Bubble Size and Effective Bubble Rise Velocity	446
		13.2.5 Interfacial Area	447
	13.3	Mass and Heat Transfer	
		13.3.1 Liquid Side Volumetric Mass Transfer Coefficients	449

CONTENTS xi

		13.3.2	Liquid-Solid Mass Transfer Coefficients	450
		13.3.3	Fluid-Solid Heat Transfer Coefficients	453
		13.3.4	Effective Thermal Conductivity and Wall	
			Heat Transfer Coefficients	453
	13.4	Reactor	r Models	454
		13.4.1	Continuum Models	454
		13.4.2	Staged Models	456
		13.4.3	Zone Models	456
	13.5	Summa	ıry	457
•	Notati	on		461
	Refere	ences		
14	Hydro	dynamic	s and Gas-Liquid Mass Transfer in Stirred	
	-	Reactors		465
	14.1	Introduc	ction	465
	14.2	Hvdrod	ynamic s	465
			Geometrical Configurations	466
			Hydrodynamic Regimes	468
			Power Dissipated	475
			Gas Holdup	479
			Solid Suspension	485
	14.3	Mass Ti		489
		14.3.1	Methods for Measuring Mass Transfer	
			Coefficients	491
		14.3.2	Mass Transfer Coefficients and Interfacial Area	495
	14.4	Reactor	r Models	502
	Notati	on		503
	Refere	ences		505
15	Mode	ls for Slu	irry Reactors J. M. Smith	511
		Introdu	•	511
	15.2		Characteristics	511
			Mixing in the Liquid Phase	511
			Mixing in the Gas Phase	512
	15.3		Reactor Models	516
	. 3.3		Global Reaction Rate	516
			Reactor Mass Conservation Equations	522
			Adequacy of Proposed Models	528
	Notat		, , , ,	529
	Refer			531
				·

XII CONTENTS

16	Applic	ations to	Hydrotreating and Other Hydrogenation		
	Proces	sses	A. Gianetto and P. L. Silveston	533	
	16.1	Introdu	ction	533	
	16.2 Hydroprocessing of Petroleum Crude Fractions				
	and Other Refinery Streams				
		16.2.1	Hydrodesulfurization	534	
		16.2.2	Hydrocracking	549	
	16.3	Hydrogenation of Chemical Compounds		553	
		16.3.1	Hydrogenation of Benzene to Cyclohexane	553	
	ŕ	16.3.2	, ,		
			Carboxylic Acid	555	
		16.3.3	Hydrogenation of Adiponitrile to Hexamethylene		
			Diamine	556	
		16.3.4	, ,	557	
		16.3.5	Hydrogenolysis of Long-Chain Esters to Produce		
			Higher Alcohols	557	
		16.3.6	Hydrogenation of Carbohydrates	559	
	Notati			561	
	Refere	ences		562	
17	Application to Coal Liquefaction P. L. Silveston				
• •	17.1	Introdu	•	564 564	
	17.2		ew of Major Liquefaction Processes	565	
			Solvent Refining	565	
		17.2.2	Direct Hydrogenation	570	
	17.3		of Coal	571	
			Mineralogical Description	573	
			Chemical Characterization	575	
			Physical Character	580	
	17.4		ition and Hydrogenation Mechanism	581	
	17.5		ection Kinetics	585	
	17.6	•	r Design	591	
			Preheater Design	591	
			Hydrogenation Reactor Design	594	
			Solvent Hydrogenator Design	598	
	Notati	ion		598	
	Refere	ences		599	
18	Doole	n of Mil	tiphase Reactors for Biological Processes		
10		y Moo-Y		601	
-		<i>iy ivioo-t</i> Introdu	•	601	

CONTENTS

		18.1.1	Reactor Types and Transfer Implications	1 00
		18.1.2	Systems and Operating Constraints	602
1	8.2	Intrinsic	Bioreaction Kinetics	606
1	8.3	Physical	Pathways	607
		18.3.1	Rate Controlling Steps	607
		18.3.2	Definition of the Transfer Coefficient	608
		18.3.3	Effect of Diffusion	610
		18.3.4	Effect of Interfacial Phenomena	611
1	8.4	Interpart	ticle Transfer Rates	612
		18.4.1	Basic Parameters	612
		18.4.2	Particles in Stagnant Environments	613
		18.4.3	Particles with Rigid Surfaces in Moving Fluids	614
		18.4.4	Particles with Mobile Surfaces in Moving Fluids	616
		18.4.5	Interacting Particles	617
		18.4.6	Non-Newtonian Flow Effects	617
		18.4.7	Effect of Bulk Mixing Patterns	618
1	18.5	Intrapari	ticle Bioreaction Rates	618
		18.5.1	General Concepts	618
		18.5.2	Oxygen Transfer in Mold Pellets	619
		18.5.3	Immobilized Enzymes	620
		18.5.4	Enzymatic Degradation of Insoluble Substrates	621
1	18.6	Physical	Properties of Bioreactor Media	621
		•	Rheological Properties	621
		18.6.2		623
		18.6.3		624
1	18.7	Bioreact	or Equipment Performance	625
		18.7.1	Bubble Columns	625
		18.7.2	Systems with Stationary Internals	626
			Special Tubular Devices	627
		18.7.4	Mechanically Stirred Tanks	629
1	18.8	Basic Ha	ardware and Efficiencies	633
	18.9		and Scale up	637
•			General Concepts	637
			Power in Ungassed Systems	637
			Power in Gassed Systems	639
			Scale up on a Flow System	641
P	Ackno	wledgme	· · · · · · · · · · · · · · · · · · ·	641
	Notatio	_		642
	Refere			645
Ţ	101010	1063		
About	the A	uthors		649
Subjec	Subject Index			653