Contents

Introduct	i	on
-----------	---	----

Ι.	THE	MOLECULAR BASIS OF BIOLOGICAL INFORMATION	
	1.	Definition of Living Systems	7
	2.	Structure and Function of Biological Macromolecules	
		2.1. The Nucleic Acids	13
		2.2. The Proteins	19
		2.3. The Genetic Code	23
	3.	The Information Problem	29

II. PRINCIPLES OF MOLECULAR SELECTION AND EVOLUTION

4.	A Mode	el System for Molecular Self-Organization	37
5.	Deter	ninistic Theory of Selection	40
	5.1.	Phenomenological Equations	40
	5.2.	Selection Constraint CP: Constant Population	46.
	5.3.	Solution of the CP Selection Equations	54
	5.4.	The Quasi-Species	62
	5.5.	Selection Dynamics in CP Systems	67
	5.6.	Complementary Instruction and Selection in CP Systems	72
	5.7.	Selection Constraint CF: Constant Fluxes	78
	5.8.	Solution of the CF Selection Equations	81
	5.9.	Selection Dynamics in CF Systems	89
	5.10.	Competition and Co-existence in CF Systems	94

1

VIII				
	6.	Stocha	astic Theory of Selection	103
		6.1.	Fluctuations and Stability	104
		6.2.	Markovian Processes	109
		6.3.	Stochastic Treatment of Simple Selection Models	118
III.	THE	TRANSI	TION FROM THE NON-LIVING TO THE LIVING	
	7.	The Ir	nformation Threshold	129
		7.1.	The Quality Function	130
		7.2.	Conditions for Stable Selection	133
		7.3.	The Accuracy of Copying of Individual Symbols	135
		7.4.	The Physics of Complementary Base Recognition	138
		7.5.	Information Storage in Darwinian Systems	149
	8.	Self-(Organization in Macromolecular Networks	154
		8.1.	General Selection Equations	154
		8.2.	Methods of Stability Analysis: Fixed Point Analysis	159
		8.3.	Long-Term Behaviour of Self-Organizing Systems	163
	9.	Infor	nation-Integrating Mechanisms	175
		9.1.	The Hypercycle - Basic Principles	175
		9.2.	Dynamics of Elementary Hypercycles	181
		9.3.	Selection Properties of Hypercycles	189
		9.4.	The Catalytic Hypercycle	205
	10.	The O	rigin of the Genetic Code	210
		10.1.	Probability of Nucleation	210
		10.2.	Models of Prebiotic Translation	215

.

11. The Evolution of Hypercycles	228
11.1. Self-Organization of Catalytic Hypercycles	229
11.2. Compartmentation and Individuation of Hypercycles	240
IV. MUDEL AND REALITY	
12. Systems Under Idealized Boundary Conditions	245
12.1. The Thermodynamic Framework	245
12.2. Stationary and Periodic Boundary Conditions	255
13. Evolution in the Test-Tube	257
13.1. The Q $_{m eta}$ Replicase System	258
13.2. Darwinian Selection in vitro	264
13.3. Experimental Perspectives: An Evolution Machine	272
14. Conclusions: The Logic of the Origin of Life	279
MATHEMATICAL APPENDICES	
A.1. The Eigenvalue Problem	287
A.2. Linear Stability Analysis	291
A.3. The Method of Lagrange Multipliers	297
A.4. Stochastic Processes	300

Bibliography

307

317

ix :

Index