## Contents

| Introduction<br>V. E. Kazarinov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| V. E. Kazamiov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                      |
| Electrolysis at the Interface Between Two Immiscible Electrolyte Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                      |
| J. Koryta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                      |
| Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>8<br>9                            |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                      |
| Problems of a Quantum Theory of Charge Transfer Reactions<br>at the Interface Between Two Immiscible Liquids                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| A. M. Kuznetsov, Yu. I. Kharkats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                     |
| <ol> <li>The Franck-Condon Principle and the Physical Mechanism of the Transition</li> <li>The Role of a Polar Medium and the Solvent Model</li> <li>The Reorganization Energy of the Medium</li> <li>The Role of Intramolecular Vibrations and Quantum Degrees of Freedom</li> <li>General Regularities in Charge Transfer Processes at the Interface Between<br/>Immiscible Liquids</li> <li>Electron Transfer at the Interface of Two Immiscible Liquids</li> <li>Ion Transfer Through the Interface</li> </ol> | 11<br>14<br>17<br>22<br>23<br>26<br>34 |
| 8. Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                     |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                     |
| Hydrodynamics and Mass Exchange at the Phase Boundaries<br>with Regular Dissipative Structures                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| V. S. Krylov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47                                     |
| 1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47<br>47                               |



Contents

| <ol> <li>Capillary Instability Due to the Marangoni Effect.</li> <li>Electro-hydrodynamic Instability</li> <li>The Linear Analysis of Marangoni Instability</li> <li>The Instability Caused by the Electric Forces Acting at the Surface</li> </ol>                          | 51<br>53<br>54   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <ul> <li>of an Electrolyte Solution</li> <li>7. Nonlinear Methods of Analyzing the Marangoni Instability</li> <li>8. Models of Systems with Regular Hydrodynamic Dissipative Structures</li> <li>9. Regular Circulation Fluxes Caused by Hydrodynamic Instability</li> </ul> | 59<br>63<br>64   |
| and their Role in Interfacial Mass Exchange      10. Conclusion                                                                                                                                                                                                              | 71<br>7 <b>3</b> |
| References                                                                                                                                                                                                                                                                   | 74               |
| Galvani and Volta Potentials at the Interface Separating<br>Immiscible Electrolyte Solutions                                                                                                                                                                                 |                  |
| Z. Koczorowski                                                                                                                                                                                                                                                               | 77               |
| Abstract                                                                                                                                                                                                                                                                     | 77               |
| <ol> <li>Introduction</li> <li>Liquid Galvanic Cells – a Historical Survey</li> <li>2.1 Liquid Galvanic Cells – a Historical Survey</li> </ol>                                                                                                                               | 79<br>80         |
| 2.2 Investigations of the Haber Type Cells                                                                                                                                                                                                                                   | 80<br>81         |
| <ol> <li>3. Galvani Potential at the Interface of Immiscible Electrolyte Solutions</li> <li>24. Convert Ammunch of La Human</li> </ol>                                                                                                                                       | 83<br>84         |
| 3.1 General Approach of Le Hung                                                                                                                                                                                                                                              | 85<br>85         |
| <ul> <li>3.3 Interfaces Reversible with Respect to Single Ions</li></ul>                                                                                                                                                                                                     | 88               |
| of Nonpolarizable Interfaces                                                                                                                                                                                                                                                 | 89<br>93         |
| <ol> <li>Polarizable Interface of Immisible Electrolyte Solutions</li></ol>                                                                                                                                                                                                  | 97<br>99         |
| 6. Final Observations                                                                                                                                                                                                                                                        | 102              |
| References                                                                                                                                                                                                                                                                   | 102              |
| Electrocapillarity and the Electric Double Layer Structure<br>at Oil/Water Interfaces                                                                                                                                                                                        |                  |

х

| M. Senda, T. Kakiuchi, T. Osakai, T. Kakutani                   | • | • | • | • | • | • | • | 107 |
|-----------------------------------------------------------------|---|---|---|---|---|---|---|-----|
| Summary                                                         |   |   |   |   |   |   |   | 107 |
| Ideal-Polarized and Nonpolarized Oil/Water Interfaces           |   |   |   |   |   |   |   | 109 |
| Electrocapillary Curves of Ideal-Polarized Oil/Water Interfaces |   |   |   |   |   |   |   | 111 |
| Electrocapillary Curves of Nonpolarized Oil/Water Interfaces    | • | • |   |   | • | • | • | 118 |
| References                                                      |   |   |   |   |   |   | • | 120 |

## Contents

| Study of the Electrical Double Layer at the Interface<br>Two Immiscible Electrolyte Solutions by Impedance | e Be<br>Mea | etwe<br>asur | en<br>em | ent | s |   |   |   |   |   |     |
|------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|-----|---|---|---|---|---|---|-----|
| Z. Samec, V. Mareček                                                                                       | •           |              | •        | •   |   | • | • | • | • | • | 123 |
| Thermodynamic Background                                                                                   |             |              |          |     |   | • |   |   |   |   | 123 |
| AC Impedance Measurements                                                                                  |             |              |          |     |   |   |   |   | • | • | 125 |
| Galvanostatic Pulse Technique                                                                              |             |              |          | •   |   |   |   |   | • |   | 129 |
| Capacitance Data                                                                                           |             |              |          |     |   |   |   |   |   |   | 133 |
| Zero-Charge Potential Difference                                                                           |             |              |          |     |   |   |   |   |   |   | 135 |
| Inner-Layer Potential Difference and Capacitance                                                           | •           |              |          | •   | • |   | • | • | • | • | 136 |
| References                                                                                                 | •           |              |          |     | • |   |   | • | • | • | 140 |

## Redox and Photochemical Reactions at the Interface Between Immiscible Liquids

| L. I. Boguslavsky, A. G. Volkov                                         | 143 |
|-------------------------------------------------------------------------|-----|
| I. Introduction                                                         | 143 |
| II. Redox Reactions in Monolayers                                       | 144 |
| III. Redox Processes in the Oil/Water System when Donor and Acceptor    |     |
| are Contained in Different Phases                                       | 145 |
| 1. Evidence for the Occurrence of the Process                           | 145 |
| 2. Influence of Specific Adsorption of Halogen Ions on the Reduction    |     |
| of Hydrophobic Porphyrin                                                | 145 |
| IV. Metalcomplexes of Porphyrins – Catalysts of Redox Reactions         |     |
| at the Interface Between Immiscible Liquids                             | 148 |
| 1. Redox Reactions Involving Chlorophyll                                | 148 |
| 2. Adsorption of Chlorophyll at the Oil/Water Interface                 | 148 |
| 3. Redox Reactions Catalyzed by Chlorophyll in the Oil/Water System     | 149 |
| 4. Formation of the Boundary Layer Enriched in Protons                  | 150 |
| 5. Redox Reactions Catalyzed by Other Metalloporphyrins                 | 151 |
| V. Evidence for the Heterogeneity of Redox Reactions Catalyzed          |     |
| by Metalcomplexes of Porphyrins                                         | 152 |
| 1. Adsorption of Catalyst at the Interface                              | 153 |
| 2. Cause of the Potential Shift and its Proportionality                 |     |
| to the Concentration of Adsorbed Catalyst                               | 154 |
| VI. Enzyme Complexes of the Mitochondrial Respiratory Chain             |     |
| in the Oil/Water Interface                                              | 156 |
| VII. Redox Reactions in the Oil/Water System Accompanied by Protonation |     |
| of Acceptor in the Nonaqueous Phase                                     | 160 |
| 1. Enzyme-Catalyzed Redox Reactions Accompanied by Capture of           |     |
| Proton by Acceptor in the Nonaqueous Phase                              | 160 |
| 2. Chlorophyll-Catalyzed Redox Reaction Accompanied by the Capture      |     |
| of Proton Acceptor in the Nonaqueous Phase                              | 163 |
| 3. Photooxidation of Water Catalyzed by Chlorophyll Adsorbed            |     |
| at the Interface Between Two Immiscible Liquids                         | 164 |

| Contents |
|----------|
|----------|

| <ol> <li>Carotene – a Photosensitizer of the Water Photooxidation Reaction</li> <li>Possible Mechanism of Water Photooxidation Sensitized</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| by Chlorophyll.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170                                                                                                   |
| 6. Reaction Thermodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170                                                                                                   |
| VIII. Coupling of Reactions at the Interface Between Immiscible Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173                                                                                                   |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176                                                                                                   |
| Counterions and Adsorption of Ion-Exchange Extractants at the Water/Oil Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| A. N. Popov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179                                                                                                   |
| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170                                                                                                   |
| The Wester (Oil Later for and Enterstion Descence)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/9                                                                                                   |
| The water/OII Interface and Extraction Processes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                   |
| Adsorption and Extraction Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181                                                                                                   |
| Counterions and Adsorption of Extractants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184                                                                                                   |
| 1. Alkylammonium Salts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184                                                                                                   |
| 2. Cation-Exchange Extractants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 194                                                                                                   |
| 3. Macrocyclic Ionophores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195                                                                                                   |
| Determination of Activity Coefficients for Extractants in Low-Permittivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |
| Madia from Surface Drossure Lasthames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                   |
| Media from Surface Pressure Isotherms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1//                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 202                                                                                                   |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207                                                                                            |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207                                                                                            |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207                                                                                     |
| Kinetics of the Photochemical Charge Separation in Micellar Solutions         M. G. Kuzmin, N. K. Zaitsev         1. The Formal Kinetics of Reactions in Micellar Systems         1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202<br>207<br>207                                                                                     |
| Kinetics of the Photochemical Charge Separation in Micellar Solutions         M. G. Kuzmin, N. K. Zaitsev         1. The Formal Kinetics of Reactions in Micellar Systems         1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 202<br>207<br>207<br>207                                                                              |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207                                                                |
| Kinetics of the Photochemical Charge Separation in Micellar Solutions         M. G. Kuzmin, N. K. Zaitsev         1. The Formal Kinetics of Reactions in Micellar Systems         1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles         1.1.1 The Pseudophase and Microscopic Models of Solubilization         1.1.2 Solubilization as a Kind of Interphase Equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208                                                         |
| Kinetics of the Photochemical Charge Separation in Micellar Solutions         M. G. Kuzmin, N. K. Zaitsev         1. The Formal Kinetics of Reactions in Micellar Systems         1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles         1.1.1 The Pseudophase and Microscopic Models of Solubilization         1.1.2 Solubilization as a Kind of Interphase Equilibrium         1.1.3 The Effect of the Intermicellar Distribution of Reactant Molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211                                                  |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212                                           |
| <ul> <li>References</li> <li>Kinetics of the Photochemical Charge Separation in Micellar Solutions</li> <li>M. G. Kuzmin, N. K. Zaitsev</li> <li>1. The Formal Kinetics of Reactions in Micellar Systems</li> <li>1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles</li> <li>1.1.1 The Pseudophase and Microscopic Models of Solubilization</li> <li>1.1.2 Solubilization as a Kind of Interphase Equilibrium</li> <li>1.1.3 The Effect of the Intermicellar Distribution of Reactant Molecules</li> <li>1.2 The Interfacial Exchange of Molecules in Microheterogeneous Solutions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212                                           |
| <ul> <li>References</li> <li>Kinetics of the Photochemical Charge Separation in Micellar Solutions</li> <li>M. G. Kuzmin, N. K. Zaitsev</li> <li>The Formal Kinetics of Reactions in Micellar Systems</li> <li>1. The Formal Kinetics of Reactions in Micellar Systems</li> <li>1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles</li> <li>1.1.1 The Pseudophase and Microscopic Models of Solubilization</li> <li>1.1.2 Solubilization as a Kind of Interphase Equilibrium</li> <li>1.1.3 The Effect of the Intermicellar Distribution of Reactant Molecules</li> <li>1.2 The Interfacial Exchange of Molecules at the Interface Between Micelles</li> <li>1.2.1 The Exchange of Molecules at the Interface Between Micelles</li> </ul>                                                                                                                                                                                                                                                | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212                                           |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>212                                    |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>212<br>213                             |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>212<br>213                             |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>213<br>214                             |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>213<br>214<br>219<br>214               |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>213<br>214<br>219<br>221               |
| <ul> <li>References</li> <li>Kinetics of the Photochemical Charge Separation in Micellar Solutions</li> <li>M. G. Kuzmin, N. K. Zaitsev</li> <li>The Formal Kinetics of Reactions in Micellar Systems</li> <li>1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles</li> <li>1.1.1 The Pseudophase and Microscopic Models of Solubilization</li> <li>1.1.2 Solubilization as a Kind of Interphase Equilibrium</li> <li>1.1.3 The Effect of the Intermicellar Distribution of Reactant Molecules</li> <li>1.2 The Interfacial Exchange of Molecules in Microheterogeneous Solutions</li> <li>1.2.1 The Exchange of Molecules at the Interface Between Micelles and Bulk Phase</li> <li>1.2.2 First-Order Reaction in Micellar Solutions</li> <li>1.2.3 Second-Order Photoreactions in Micellar Solutions</li> <li>1.2.4 Reversible Reactions</li> <li>2. Charge Separation in Micellar Systems</li> <li>2.1 Micelles as Media for Photochemical Reactions</li> </ul>                        | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>212<br>213<br>214<br>219<br>221<br>221 |
| <ul> <li>References</li> <li>Kinetics of the Photochemical Charge Separation in Micellar Solutions</li> <li>M. G. Kuzmin, N. K. Zaitsev</li> <li>1. The Formal Kinetics of Reactions in Micellar Systems</li> <li>1.1 Solubilization of Molecules by Surfactant Micelles and the Distribution of Reactant Molecules Among Micelles</li> <li>1.1.1 The Pseudophase and Microscopic Models of Solubilization</li> <li>1.1.2 Solubilization as a Kind of Interphase Equilibrium</li> <li>1.1.3 The Effect of the Intermicellar Distribution of Reactant Molecules</li> <li>1.2 The Interfacial Exchange of Molecules in Microheterogeneous Solutions</li> <li>1.2.1 The Exchange of Molecules at the Interface Between Micelles and Bulk Phase</li> <li>1.2.2 First-Order Reaction in Micellar Solutions</li> <li>1.2.3 Second-Order Photoreactions in Micellar Solutions.</li> <li>2.4 Reversible Reactions</li> <li>2.1 Micelles as Media for Photochemical Reactions</li> <li>2.1.1 Models of Micellar Solutions Influencing the Reactivity</li> </ul> | 202<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>212<br>213<br>214<br>219<br>221<br>221 |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202<br>207<br>207<br>207<br>207<br>207<br>207<br>208<br>211<br>212<br>213<br>214<br>219<br>221<br>221 |

| 2.2 Initial Charge Separation and Geminate Recombination                 |
|--------------------------------------------------------------------------|
| in Micellar Systems                                                      |
| 2.2.1 Photoionization in Micellar Solutions                              |
| 2.2.2 Photoprotolytic Dissociation in Micellar Solutions                 |
| 2.2.3 Second-Order Intramicellar Electron Transfer Reactions 229         |
| 2.2.4 Bimolecular Proton Transfer Reactions                              |
| 2.3 Initial Stabilization of the Charge Separation Products              |
| 2.4 Bulk Recombination of Separated Charges and Mass Exchange            |
| at the Interface                                                         |
| 2.4.1 Effect of the Micellar Potential upon the Bulk Recombination       |
| of Charge Carriers                                                       |
| 2.4.2 Effect of the Hydrophobic Balance of Reactants upon their          |
| Solubilization                                                           |
| 2.4.3 Molecule Exchange at the Interface                                 |
| 2.5 Stabilization of the Separated Charges in Systems with Mediators 238 |
| 3. Conclusion                                                            |
|                                                                          |
| References $\ldots$ $\ldots$ $\ldots$ $\ldots$ $241$                     |
|                                                                          |
|                                                                          |
| Subject Index                                                            |