Contents

	Resonant Multiphoton Interactions and the Generalized Fwo-Level System
	1.1 The Basic Equations Describing the Evolution of Radiation
I	• •
	Interacting with Matter
i	1.2 The Truncated Equations for the Density Matrix
	1.2.1 The Two-Level Model and the First Approximation
	of the Averaging Method
	1.2.2 Second-Order Resonances and an Example of the
	Simultaneous Realization of Two Resonance Conditions
	1.2.3 The Hamiltonian of the Averaged Motion
	1.2.4 The Truncated Equations for Resonances of Arbitrary
	Order Involving Many Levels
	1.3 Polarization of Matter and the Generalized Dipole Moment
J	1.4 The Generalized Two-Level System
5	The Molecular Response to the Resonant Effects of
	Quasimonochromatic Fields
2	2.1 The Change of Populations of the Generalized Two-Level
	System in Quasimonochromatic Fields
	2.1.1 Saturation of Populations of Resonant Levels and the
	Effect Which the Level Shift Under the Influence of
	Light Has on Saturation
	2.1.2 Balance Equations and Interference of Transition
	Probability Amplitudes in Resonant Parametric
	Interactions
2	2.2 Susceptibility in Incoherent Multiphoton Processes
	2.2.1 Expressions for Susceptibility
	2.2.2 The Imaginary Part of Susceptibility as a Function
	of Fields and the Energy Absorbed by Matter
	2.2.3 The Real Part of Susceptibility for the Single-Photon
	Resonance
	2.2.4 The Real Part of Susceptibility for Two-Photon
	Absorption (TPA) and Stimulated Raman Scattering
	(SRS)
	2.2.5 The Real Part of Susceptibility Generated by Light
	Pulses
2	2.3 Spectroscopy of Polarizabilities of Excited States
4	2.4 Molecular Response for Resonant Parametric Interactions
	-

XI

3.	The Dynamics of Quantum Systems for Resonant	
	Interactions with Strong Nonstationary Fields	63
	3.1 The Equation of Motion and Its Properties	63
	3.1.1 The Specific Features of the Relaxation of the System	
	in a Strong Quasi-Resonant Field	63
	3.1.2 The Equation of Population Motion	67
	3.1.3 Equation of Population Dynamics for Two-Photon	
	Processes	70
	3.2 Amplitude Modulation for Exact Frequency Resonance, $\omega \equiv 0$	
	(Exact Solutions)	71
	3.2.1 Equal Relaxation Times $(T = \tau)$	72
	3.2.2 The Case of Unequal Relaxation Times $(T \neq \tau)$	80
	3.2.3 Relaxation in the Field of a Single Pulse for $T \neq \tau$,	00
	and Methods for Exact Solutions $\dots \dots \dots \dots \dots \dots$	87
	3.3 Amplitude-Frequency Modulation of the Field	01
	(Exact Solutions)	90
	3.3.1 The Case of Equal Relaxation Times $(T = \tau)$	90
	3.3.2 The Non-Equal Relaxation Times $(T \neq \tau)$	93
	3.4 Approximate Solutions in Various Limiting Cases	101
	3.5 Relaxation in a Stationary Field	101
	3.6 Polarization Dynamics in a Nonstationary Field	100
	5.6 Polarization Dynamics in a Nonstationary Field	100
4.	Polarization of Resonant Media	111
	4.1 Nonlinear Polarization of Gaseous Media	112
	4.1.1 Probability of Stimulated Multiphoton Transitions	
	and Polarization of Freely Self-Orienting Systems	112
	4.1.2 The Local Coherence of Parametric Interaction	114
	4.1.3 Influence of the Doppler Effect on the Shape	
	of the Absorption Line for Multiphoton Interactions	117
	4.2 Dispersion Properties of the Resonant Susceptibility of Media	
	with Identically Oriented Particles	118
	4.3 The Equation for the Nonlinear Susceptibility	
	for the Single-Photon Resonance	123
	4.4 The Properties of Spatial Harmonics of Susceptibility	126
	4.4.1 Relationships Between Direct and Mixed Susceptibilities	127
	4.4.2 The Connection Between Susceptibilities χ , a and b	128
	4.4.3 Potential Function for Susceptibilities	130
		100
5.	Structure of One Dimonsional Ways for the Single Distance	
J .	Structure of One-Dimensional Waves for the Single-Photon Resonance	132
	5.1 Conservation Laws for One-Dimensional Waves in	197
		100
	Resonant Media	132
	5.2 Stationary Oscillations in a Layer of Identical Molecules	100
	Without Distributed Losses	136

	5.3 Stationary Oscillations in a Layer of Identical Molecules in the Presence of Distributed Losses	140
	5.4 Rotation of Polarization Planes of Countertravelling Waves	140
		147
	in an Isotropic Nonlinear Medium	141
6.	Three-Photon Resonant Parametric Processes	152
	6.1 Addition and Doubling of Frequencies for a Transition	
	Frequency in Matter That Coincides with the Sum	
	Frequency or the Frequency of the Harmonic	154
	6.1.1 Addition and Doubling of Frequencies in a Medium with	
	Identically Oriented Molecules	155
	6.1.2 On Resonant Frequency Doubling in Vapors and Gases	163
	6.2 Generation of the Second Harmonic of Resonant Pumping	169
	6.3 Resonant Division of Frequency	173
	6.4 Generation of the Difference Frequency During Stimulated	
	Raman Scattering	178
	6.4.1 Generation of Resonant Radiation During SRS in a	
	Medium Consisting of Identically Oriented Molecules	179
	6.4.2 Generation of the Difference Frequency During SRS	
	in Gases	186
	6.4.3 Generation of the Difference Frequency During SRS	
	in the Presence of a Nonuniform Electrostatic Field	193
7.	Four-Photon Resonant Parametric Interactions (RPI)	206
	7.1 Anti-Stokes Stimulated Raman Scattering	210
	7.1.1 Specific Features of ASRS	210
	7.1.2 Basic Equations	211
	7.1.3 Spatial Distribution of the Anti-Stokes Component	212
	7.1.4 Energy Characteristics of ASRS	215
	7.1.5 The Experimental Analysis of Energy Characteristics	218
	7.2 The Influence of Four-Photon RPIs on the Dynamics	
	of the Stokes Components of SRS	222
	7.2.1 Generation of the Stokes Components of SRS During	
	Biharmonic Pumping	222
	7.2.2 The Effect of Strong Pumping TPA on Weak	
	Pumping SRS	232
	7.2.3 Discussion of Experimental Results	235
	7.3 Radiation Frequency Transformation in Four-Photon RPIs	
	Based on Pumping Field TPA and SRS	240
	7.3.1 Introductory Remarks and Basic Equations	240
	7.3.2 Generation of the Difference Frequency During TPA	243
	7.3.3 Generation of the Sum Frequency During TPA	246
	7.3.4 The Effect of Wave Detuning	248
	7.3.5 Transformation Length and Effect of Population	
	Saturation	251

	7.3.6 Four-Photon RPI's Based on SRS of the Pumping Field	254
	7.3.7 Generation of the Difference Frequency During SRS	255
	7.3.8 Generation of the Sum Frequency During SRS	257
	7.3.9 Discussion	258
	7.4 On Soft Excitation of Stimulated Two-Photon Radiation	261
8.	Self-Action of Light Beams Caused by Resonant	
	Interaction with the Medium	270
	8.1 Specific Features and Threshold Characteristics	
	of Self-Focussing in an Absorbing Medium	270
	8.1.1 The Equation for the Beam Radius	272
	8.1.2 The Threshold for Weak Attenuation	274
	8.1.3 The Threshold for Strong and Intermediate Attenuation	278
	8.2 The "Weak" Self-Focussing and Self-Defocussing	
	of a Gaussian Beam in an Absorbing Medium	281
	8.3 Self-Bending of Trajectories of Asymmetric Light Beams	
	in Nonlinear Media	284
	8.4 Conditions for the Existence of Self-Action Caused	
	by Resonant Absorption	289
	8.5 Self-Action of Light Caused by Stimulated Raman	
	Scattering	295
	8.5.1 Formation of a Thin Lens in the Region	
	of SRS-Transformation	295
	8.5.2 The Threshold of SRS Self-Focussing and Self-Bending .	297
	8.6 Self-Action Effects at Nonlinear Interface	301
	8.6.1 Nonlinear Properties of Interfaces	301
	8.6.2 The Main Equations and Conditions	304
	8.6.3 Effects at "Positive" Nonlinearity	306
	8.6.4 Experiments on a Nonlinear Interface	309
	8.6.5 Effects at "Negative" Nonlinearity Longitudinally	
	Inhomogeneous Traveling Waves (LITW)	313
	8.6.6 Theorems of LITW Existence for Arbitrary Kinds	
	of Nonlinearity	317
	8.7 Optical Bistability Based on Mutual Self-Action	
	of Counterpropagating Light Beams	318
	8.7.1 Experimental Observation of Bistability Based	
	on Self-Trapping	318
	8.7.2 Mutual Self-Action of Counterpropagating Beams	
	in the General Case	320
Re	ferences	327
Sul	bject Index	339