CONTENTS

PART I LASER DIAGNOSTICS

1.	Lase	· Velocimetry	
	1.1	Sizing and velocity measurement of particles in spray jet	
		using a two-colour, four-beam LDV	1
	1.2	Measurements of turbulent structures in premixed flame with	
		multi-point LDVs	11
	1.3	Velocity measurements in combustion fields using a	
		Laser-2-Focus velocimeter	21
2.	LDV	Application	
	2.1	Simultaneous measurement of temperature and velocity in	
		turbulent diffusion flames by Rayleigh scattering and LDV	
		system	29
	2.2	Flow characteristcs of an unsteady jet ejected into a	
		prechamber spark ignition engine	35
	2.3	The flow characteristics in a swirl type combustor	45
	2.4	Velocity and turbulence measurements in model gas-turbine	
		combustion chambers and comparison with a model calculation	55
3.	Spra	y Measurement	
	3.1	Development of a time-resolved particle sizer and spray sizing	
		in high back-pressure injection	63
	3.2	A new direct analysis method for measuring particle size	
		and location by inline hologram	71
	3.3	Determination of the characteristics of diesel spray by the	
		bidirectional light scattering image processing method	77
	3.4	Measurements of the fuel vapor concentration in a diesel	
		spray by analysis of reconstructed hologram images	89
4.	Soot	Measurement	
	4.1	Laser schlieren photography for visualizing soot in a diesel	
		flame in a rapid compression machine	99
	4.2	On the simultaneous measurement of the diameter of soot	
		particle and its optical constant in flames	105

5 .	Raman Spectroscopy					
	5.1	CARS thermometry for high pressure gases				
	5.2	Measuring temprature in propane-air pre-mixed laminar				
		flame using the IRS method				
	5.3	Multiple species concentration and temperature measurements				
		in hydrocarbon flame by pulsed laser Raman				
	5.4	Application of UV and VUV excimer lasers in combustion				
		measurements using enhanced Raman scattering				
6.	Non-	Raman Spectroscopy				
	6.1	Using two-photon absorption to measure the temperature				
		and concentration of nitric oxide in propane/oxygen flames 141				
	6.2	Measuring the mass fraction burned of a methane-air				
		mixture by a diode-laser absorption spectrometry				
	6.3	A laser light-scattering method for investigating the ionized				
	0.0	state in a propagating flame				
		Tame Transfer Tolling				
7.	Imag	ge Technique				
• •	7.1	Development of a twin pulse high-speed holography system				
		to measure combustion				
	7.2	Monochromatic image acquisition system for real-time				
		observations of continuous and pulsed emission of light 171				
	7.3	Combustion diagnostics by electronic speckle pattern				
	1.0	interferometry using a CCD image sensor				
		interretonically using a COD image sensor				
8	Imag	ge Processing				
•	8.1	Measurement of three-dimensional flame temperature fields				
		by holographic interferometery and computed tomography 187				
	8.2	Three-dimensional measurement of the shape of combustion				
	٠. ت	flames				
\mathbf{P}_{A}	ART	II MODELING				
9.	Mole	cular Process Analysis				
	9.1	Laser-induced fluorescence of unstable intermediates in				
		combustion: HSO and H_2CS				
	9.2	Collisional deactivation of vibrationally highly excited				
		hexafluoro-benzene molecules				
	9.3	The vibrational relaxation of N ₂ coupled with H ₂ -O ₂				
		combustion reactions behind shoch waves				

		Contents	XI
10.	Comb	ustion Analysis in Piston Engine	
	10.1		225
	10.2	Turbulent combustion in the cylinder of a spark-ignition	
		engine	235
	10.3	Experiments on turbulent burning velocities of premixed	
		mixtures in a closed bomb	243
	10.4	Gas velocity and turbulence measurement in a spark	
		ignition engine using a LDA with a fiber-optic pick-up 2	251
	10.5	Photographic measurement of air entrainment in	
		two-dimensional fuel jets	259
	10.6	Effects of in-cylinder air flow on diesel combustion 2	267
11.	Comb	ustion Analysis in Burner System	
	11.1	Direct measurements of the turbulent transport of	
		momentum and heat in the swirling flame	273
	11.2	Time scale distribution of laminar flamelets in turbulent	
		premixd flames	281
	11.3	Development of a laboratory automation system for	
		measuring the characteristics of transient gas jets	287
12.	Flow	Simulation	
	12.1	Multidimensional modeling of flow and heat transfer	
		during the intake and compression processes in a motored	
			293
	12.2	• •	303
19	Comb	oustion Simulation	
19.	13.1		311
	13.2	Numerical simulation of laminar flame propagation in	
	10.2		319
	13.3	A theoretical study of supercritical liquid fuel combustion	329
	13.4	Turbulent mixing model of diesel combustion	
	13.5	Modeling the structure of a turbulent diffusion flame over	
			347
Qui	bject I	Index	353
Du	oject I	inuca	