Contents

Introduction

I. Linear Equilibrium Aggregates

1.	Statistical Thermodynamic Background	3
	1. Canonical and Grand Partition Functions	4
	2. Aggregation and Osmotic Pressure Virial Coefficients	6
	3. Partition Function for an Open, Independent Aggregate	18
	4. The Macroscopic Aggregate as a Limiting Case	23
2.	Attached Single-Stranded Polymer	32
	5. Attached Polymer at Equilibrium or Steady State	33
	6. Attached Polymer in Transients	42
	7. Attached Polymer under a Force	51
3.	Free Single-Stranded Polymer	78
	8. Free Polymer at Equilibrium	78
	9. Kinetic Aspects for a Free Polymer	90

4.	Single-Stranded Polymer Modified by a Second Component, a Bound Ligand, or a Cap	110
		110
	10. Two-Component Single-Stranded Polymer	110
	11. Single-Stranded Polymer with Bound Ligand or Cap	122
5.	"Surface" Properties of Some Long Multi-Stranded Polymers	137
	12. General Discussion of the Models	137
	13. Equilibrium and Steady-State Properties of Aligned Models	144
	14. Equilibrium and Steady-State Properties of Staggered Models	156
	15. Models with Dimers as Subunits	167
6	Some Attached Multi-Stranded Polymers at Equilibrium and in	
υ.	Transients	174
	16. Simple Dual Aggregation and the Vernier Effect	174
	17. Dual Aggregation with Vernier Enhancement	184

18.	A Further Example of Dual Aggregation	190
19.	Aligned Tubular Models at Equilibrium	193

II. Linear Steady-State Aggregates

7.	Enzymatic Activity at Polymer Tips Only	199
	20. Enzymatic Activity along the Polymer Length	200
	 Enzymatic Activity at Polymer Tips Only: Bioenergetics and Fluxes Enzymatic Activity at Polymer Tips Only: Length Distributions and 	203
	Transients	219
	23. Fluctuations in the Polymer Length Distribution	223
8.	NTP Caps and Possible Phase Changes at Polymer Ends.	227
	24. Illustrative Biochemical Models that Generate Phase Changes	228
	25. Attached Polymer with Phase Changes at the Free End	244
	26. Free Polymer with Phase Changes at the Ends.	265
	27. Simulation of Two "Phases" by Aggregation of One Component on	
	Another	284
In	dex	303