CONTENTS

Preface	•	•	•	•	•	·	•	٠	•	•	•	•	٠	.•	•	•	•	•	·	•	v
Introduct	io	n									Ь	I. K	Koy	am	a a	nd	М.	U	nec	la	vii

RAISING OF USEFUL CELL LINES

CULTIVATION OF HUMAN MYELOMA CELLS

M. Namba, K. Nishitani, F. Hyodoh, F. Fukushima,	
T. Ohtsuki, N. Inoue, K. Miyamoto, K. Imai,	
K. Nose, J. Minowada, and T. Kimoto	3
I. Characteristics of our established cell lines	4
II. Present problems and prospects for the future	10
Summary	13

CHARACTERISTICS AND UTILITY OF A PANEL OF 93 HUMAN	
LEUKEMIA-LYMPHOMA CELL LINES J. Minowada	17
I. Establishment, characterization, and cryopreservation	18
xiii	

xiv

II. Clinical utility, significance, and implication	21
III. Theoretical utility, significance, and implication	25
Summary	29
STRUCTURE AND FUNCTION OF E1A GENES OF ADENOVIRUS	
TYPE 12-APPLICATION OF E1A FOR RAISING A USEFUL	
MAMMALIAN CELL LINE	
K. Onodera, Y. Etoh, S. Takano,	
H. Morioka, and H. Shibai	37
I. Characteristics of cells in which the E1A gene has been	
introduced	39
II. Introduction of the E1A gene into mammalian cells	42
5	-
III. Further information on the function of the E1A gene	47
Summary	50
A ROLE FOR EPSTEIN-BARR VIRUS (EBV) IN IMMORTALIZATION	
OF PRIMATE EPITHELIAL CELLS B.E. Griffin	55
I. Establishment and characterization of immortalized epithelial	
	57
II. Potential usefulness of EBV p31-induced monkey (and human)	
cell lines	63
Summary	64
	2.

EXPLOITATION OF MAMMALIAN CELL VECTORS

L FACTOR, A POTENTIALLY USEFUL PLASMID VECTOR FOR MAMMALIAN CELLS

H. Uehara, T. Kusano, H. Saito, K. Segawa, and M. Oishi	- 71
I. Discovery and characteristics of L factors in a subline of L cells	
	72
II. Replication and the expression of L factors	80
III. L factor as a plasmid	84
IV. Application of L factors	85
Summary	

CONTENTS

DEVELOPMENT AND APPLICATION OF A VECTOR SYSTEM THAT PERMITS CLONING OF cDNA'S ON THE BASIS OF THEIR EXPRESSION IN MAMMALIAN CELLS

	0	kay)an	ıa	91
I. High-efficiency cloning of full-length cDNA					<i>92</i>
II. The pcD expression vector	•				94
III. The LambdaNMT transducing vector					96
IV. An attempt to improve cDNA library transduction				•	9 8
V. Application					100
Summary		•	•	•	101

PRODUCTION OF BIOLOGICALS AND THE SAFETY PROBLEMS

PRODUCTION AND DEVELOPMENT OF BIOLOGICALS DERIVED FROM RECOMBINANT-DNA MAMMALIAN CELL CULTURES
J. Obijeski 105
I. Construction of mammalian cell vectors by recombinant DNA
technique
II. Immunization by recombinant vaccine
III. Use of continuous cell lines for the production of biologicals
IV. Cell characterization
V. Validated production procedure and assurance of the purity
and safety of products
VI. Problems of endogenous viruses
Summary

PRODUCTION OF MONOCLONAL ANTIBODIES WITH HUMAN-HUMAN HYBRIDOMAS IN SERUM-FREE CULTURE AND ITS PROSPECTS FOR MEDICAL USE

· · · · · · · · · · · · · · · · · · ·	Mи	ırak	am	119
I. Preparation of fusion partner cell lines				119
II. Characteristics of a fusion partner cell line, HO-323				120
III. Serum-free culture of human-human hybridomas				122
IV. Monoclonal antibodies specific to cancer cells				127
V. Characterization of cancer specific antigens			•	. 132

xvi

VI. Multifunctional antibody	133
Summary	135
MASS MAMMALIAN CELL CULTURE N.B. Finter, M.D. Johnston, G.D. Ball,	
K. Fantes, and K. Pullen	
	140
II. Wellcome's suspended cell technology	
III. Interferon production	
IV. Acceptability of lymphoblastoid interferon	143
	144
VI. Other applications of Wellcome's mass mammalian cell	
culture technology	144
Summary	
PRODUCTION AND CHARACTERIZATION OF HUMAN	
INTERFERON-GAMMA AND OTHER SUBSTANCES PRODUCED	
BY GENETICALLY ENGINEERED MAMMALIAN CELLS	
E. Sano, T. Sudo, K. Okano, R. Sawada	
M. Ito, M. Naruto, M. Iizuka, and S. Kobayashi	
I. Construction of expression plasmids	. 150
IF N_{γ} or IL-2	
III. Long-term cultivation of recombinant CHO cells producing	131
•	155
IFN- γ or IL-2	. 155
CHO and C127 cells \ldots \ldots \ldots \ldots	
Summary	. 101
THE SAFETY OF PRODUCTS DERIVED FROM CONTINUOUS CELL	
LINES J.C. Petriccian	
I. Current issues	
II. Biotechnology	
6.	173
	. 176
	. 178

CONTENTS									xvii	
Author Index									. 181	
Subject Index									. 183	

.