Contents

Chap	and Solid Dynamics	1
1.1	Dynamic response of solids	1
1.2	Structure of materials	2
1.3	Continuum and microstructure	6
1.4	Deformations	S
1.5	Stresses	12
1.6	Conservation laws	13
1.7	Hooke's law	16
1.8	Absorption and viscoelasticity	19
1.9	Piezoelectricity and other coupled phenomena	21
1.10		25
	Wave front and wave classification	27
1.12	Conditions across discontinuity	29
1.13	Characteristics and hyperbolicity	32
1.14	Energy flux	34
1.15	Basic concepts of waves. Debye's frequency	35
	Group and signal velocities	38
1.17	Causality and general relations for linear systems	41
Prob	lems	43
Refer	rences and additional reading	45
Chap	oter II Bulk Waves in Isotropic Media	46
2.1	Modes and velocities of elastic waves	46
2.2	Vector representation and wave potentials	49
2.3	Wave motion in curvilinear coordinates and separability	51
2.4	Plane waves	53
2.5	Cylindrical waves	55
2.6	Spherical waves	59
2.7	Radiation from a cylindrical cavity	62
2.8	Radiation from a rigid embedded cylinder. Radiation damping	64
2.9	Radiation from a spherical cavity. Remarks on radiation conditions	66
2.10	Radiation from a rigid embedded sphere. Imperfect bonding	67
2.11	Multipoles, resonances, and related considerations	72
2.12	Green's dynamic tensor	75

x Contents

	Energy transport in harmonic waves								78
	Viscoelastic waves. Spatial and temporal attenuation								81
	Viscoelastic pulse propagation. Wavefront velocity .								84
2.16	Radiation from a moving dislocation	•	•	•	•	•	•	•	85
2.17	Creation of a dislocation dipole. Non-uniform motion		•	•	•	•	٠	•	87
	Limitations of the linear theory. Shock waves								89
	plems								92
Refe	rences and additional reading	•	•	•	•	٠	٠	•	94
Cha	pter III Bulk Waves in Anisotropic Media .	•	•	•	•	٠	٠	•	95
3.1	Plane waves								95
3.2	Effects of symmetry								98
3.3	Pure modes in cubic systems								100
3.4	General modes in cubic systems								104
3.5	Energy velocity								107
3.6	Waves in piezoelectric media								109
3.7	Quasi-electrostatic approximation of piezoelectricity								
3.8	Modes in a piezoelectric cubic system								
3.9	Bulk wave piezoelectric transducer								
	Generation of harmonic waves. Resonators								
3.10									
3.11	Improved analysis of resonators								
	Characteristic surfaces								
	olems								
Refe	rences and additional reading	•	٠	•	•	•	٠	٠	124
Ch.	to IV Daniel Effect and Warranidas								125
Onaj	pter IV Boundary Effects and Waveguides .								
4.1	Reflection and mode conversion at free boundary .								126
4.2	Reflection at interface. Impedance matching								129
4.3	Rayleigh waves in isotropic half-space								131
4.4	Rayleigh waves in anisotropic half-space								
4.5	Love waves								138
4.6	Interdigital transducer								
4.7	Waves in a plate. Cut-off frequencies								
4.8	Frequency spectrum of a plate								144
4.9	Torsional waves in a cylinder								
4.10	Longitudinal waves in a cylinder								
4.11	Flexural waves in a cylinder								
4.12	Timoshenko beam theory								
	•					•	•	٠	156
	Mindlin plate theory				•	•	•	•	
	Normal modes of waveguides				•	•	•	•	160
	Forced motions via modal superpositions		٠	•	•	•	•	•	163
	Acoustic emission in a rod		•	•	•	•	•	•	167
	Radiation from a moving load	•	•	•	٠	•	•	•	169
	lems	•	•	•	•	•	•	•	172
Kefer	rences and additional reading	_							173

Contents x1

Chap	ter V Wave-Obstacle Interactions.								
•	Waves in Composites								175
5.1	Wave-obstacle interactions						0		175
5.2	Dynamic stress concentrations								178
5.3	Scattering cross-sections								180
5.4	Diffraction by a sphere								184
5.5	Response of random composites							•	187
5.6	Effective scatterer approach							•	189
5.7	Composite sphere assemblage								191
5.8	A differential scheme								193
5.9	Response of polycrystals								195
5.10	Rigorous definitions of the effective response	•							198
5.11	Bounds for static moduli	•						•	200
5.12	Wave propagation in random composites		•						202
5.13	Causal approach of independent scatterers								
5.14	Causal differential media					•	•		206
	Waves in fiber composites. Typical dispersion curves								
	Waves in ordered systems. Atomic lattice								
	Waves in layered composites								
Prob.	ems								219
Refer	ences and additional reading	•		•	٠	•	•	٠	221
Com	ments on Selected Problems								223
	rences								
Autl	or Index								232
Subj	ect Index								233