Table of Contents

.

	List of Contributors	xv
I	Tissue Specific Gene Expression: A Summary EL. WINNACKER	1
I.1	Introduction	1
I.2	A General Summary of Eukaryotic Transcriptional Activation	1
I.3 I.3.1 I.3.2 I.3.3	Some Selected Methods for the Analysis of Eukaryotic Gene Control Transgenic Animals DNA/Protein Interactions Purification of DNA-binding Proteins and Cloning of Corresponding	4 4 5
I.3.4	Genes Functional Studies of Transcription Factors	7 8
I.4	Future Developments	9 10
1	Chromatin Remodeling During Immunoglobulin Gene Activation W. T. GARRARD	13
1.1 1.1.1 1.1.2 1.1.3	IntroductionThe Biology of B Cell DifferentiationThe Mouse κ Immunoglobulin Light Chain Gene LocusActive and Inactive Chromatin Structure and Composition	13 13 13 15
1.2 1.2.1	Experimental Results Nuclear Proteins Partition Nonrandomly During Chromatin	16
1.2.2	Fractionation Immunoglobulin Gene Sequences Partition Nonrandomly During	16
1.2.3	Chromatin Fractionation \dots The Entire Active κ Immunoglobulin Gene Locus Occupies a Common	16
	Subnuclear Compartment	19

٠

1.2.4	A Disrupted Nucleosomal Chromatin Structure Spans the Entire Active κ Immunoglobulin Gene Locus	20
1.2.5	Chromatin Remodeling is Dependent on Differentiation but Independent of Active Transcription	21
1.2.6	Unusual Chromatin Phenotype in the Active κ Immunoglobulin Gene Locus	23
1 .2.7	Chromosomal Loop Organization of the κ Immunoglobulin Gene Locus	25
1.3	Concluding Remarks and Prospectus	27
1.4	Summary	29
	Acknowledgements	29
	References	29

2	Octamer Transcription Factors Mediate B-Cell Specific Expression of Immunoglobulin Heavy Chain Genes E. Schreiber, M.M. Müller, W. Schaffner and P. Matthias	33
2.1	Introduction	33
2.2	B-Cell Specific Expression of the Immunoglobulin Heavy Chain Gene .	34
2.3	Role of the IgH Enhancer for Ig Transcription	34
2.4	Composition of the Mouse IgH Enhancer	36
2.5	The V _H Promoter: Role of the Octamer Motif	39
2.6	The Octamer-Paradox	40
2.7	Octamer Binding Proteins	40
2.8	Molecular Cloning of a Gene Coding for the Lymphoid Specific Octamer Binding Protein OTF-2A	44
2.9	OTF-2 is a Homeobox Protein	44
2.10	Functional Expression of the OTF-2 Gene in non B-Cells	45
2. 11	Is OTF-1 a Multi-purpose Factor and OTF-2A a Single-purpose Factor?	47
2.12	Concerted Action of Promoter and Enhancer Bound Transcription Factors Directs Expression of Immunoglobulin Heavy Chain Genes in	
	B-Cells	49
2.13	What is the Nature of Synergism?	50
2.14	Future Perspectives	50
	Acknowledgements	51
	References	51

3	Positive and Negative Factors Contribute to the Tissue-specific Activities of the Immunoglobulin Heavy-chain and Polyoma-virus Enhancers B. WASYLYK, J. L. IMLER, J. PEREZ-MUTUL, E. UGARTE, C. WASYLYK, B. CHATTON, M. MACCHI and C. SCHATZ	55
3.1	Introduction	55
3.2 3.2.1 3.2.2 3.2.3	IgH EnhancerIntroductionIdentification of Proteins which Interact with the IgH EnhancerMotifs E1-4, C1-3, OC and E Contribute to Enhancer Activity in	55 55 57
3.2.4	Myeloma Cells Interactions Between Transcription Factors are Required for IgH Enhancer Activity	57 61
3.2.5	Some of the IgH Enhancer Motifs are Functional in Fibroblasts	62
3.3 3.3.1 3.3.2	The Polyoma-virus Enhancer Introduction The α -Domain Interacts with two Cell-specific Factors, PEA 1 and	62 62
3.3.3 3.3.4	PEA 2 PEA 2 is a Labile Repressor of a α -Domain Activity in Fibroblasts PEA 1 is a Positive Inducible Transcription Factor	63 65 68
3.4	Conclusions	69
	Acknowledgements	70
	References	70
4	Studies on the Immunoglobulin κ Gene Promoter R. MOCIKAT, F.G. FALKNER and H.G. ZACHAU	73
4.1	Introduction	73
4.2	Expression of a κ Gene in Monkey Cells Under the Control of the SV40 Promoter	73
4.3	An Immunoglobulin κ Gene is Correctly Transcribed from its own Promoter After Transfer into Lymphoid Cells	75
4.4	Conserved Sequence Elements in the κ Gene Promoter	75
4.5	Tissue Specific Initiation of κ Gene Transcription	77
4.6	The Decamer Element is Recognized by Nuclear Proteins	78
4.7	Cell-type Specific and Ubiquitous dc Binding Proteins	81
4.8	An ACCC-containing Binding Site is Located in the Neighbourhood of the Decanucleotide of Several κ Gene Promoters	82

4.9	Concluding Remarks	83
	Acknowledgements	84
	References	84

5	Regulation of MHC Class II Gene Expression: X, Y and Other Letters of the Alphabet C. BENOIST and D. MATHIS	87
5.1	Introduction	87
5.2	The \mathbf{E}_{a}^{k} Gene	89
5.3	The Promoter-proximal Stretch	90
5.3.1	The X and Y Boxes	9 1
5.3.2	Other Motifs	93
5.3.3	How Does the Promoter-proximal Stretch Operate?	93
5.4	The Promoter-distal Stretch	94
5.4.1	Functional Importance	94
5.4.2	The X' and Y' Boxes	94
5.4.3	The W Sequence	95
5.4.4	Other Motifs	9 7
5.4.5	How Does the Promoter-distal Stretch Work?	9 7
5.5	A Model	9 8
	Acknowledgements	99
	References	99

6	<i>cis</i> and <i>trans</i> Determinants of Chicken β-Globin Transcription J. L. GALLARDA, Z. YANG, D. H. ENDEAN, K. P. FOLEY and J. D. ENGEL	103
6.1	Introduction	1 03
6.2	Genetics of β -Globin Transcriptional Regulation	104
6.3	Biochemistry of β -Globin Enhancer Regulation	105
6.4	Biochemistry of the β -Globin Promoter	107
6.5 6.5.1 6.5.2	A General Strategy for Cloning <i>trans</i> -acting Factor Genes Reverse RIA Model Studies <i>in vitro</i> Immunization Model Studies	109 110 113
6.6	Monoclonal Antibodies to β -Globin Enhancer Binding Proteins	113

6.7	Summary and Conclusions	117
	Acknowledgements	120
	References	1 20

7	The Regulation of the Human β -Globin Domain F. GROSVELD, M. ANTONIOU, G. BLOM VAN ASSENDELFT, F. CATALA, P. COLLIS, E. DE BOER, N. DILLON, D. GREAVES, O. HANSCOMBE, J. HURST, M. LINDENBAUM, E. SPANOPOULOU, D. TALBOT and L. WALL	123
7.1	Introduction	123
7.2	The Structure and Genetic Defects of the Human β -Globulin Gene Family	124
7.3	Regulatory Regions Flanking the Human β -Globin Genes	124
7.4	The Promoter of the Human γ-Globin Gene	1 29
7.5	The Dominant Control Region (DCR) Flanking the β -Globin Gene Domain	1 30
7.6	The Role of the DCR and the Regulation of Stage-specific Expression .	132
7.7	Conclusions	133
	Acknowledgements	134
	References	134
8	Tissue Specific Expression of the Growth Hormone Gene	137
8.1	Introduction	137
8.2	Differentiation of the Somatotropic Lineage	138
8.3	Cell-type Specific Expression	139
8.4	Extinction of GH Expression	140
8.5	Interactions Between GHF-1 and Hormone Responsive Factors	141
8.6	Purification and Characterization of GHF-1	143
8.7	Structure and Expression of GHF-1	144
8.8	Summary – A Model for GH Gene Activation	145
	Acknowledgements	146
	References	146

9	cis-Elements and trans-acting Factors Involved in the Tissue-specific Expression of the Human α1-Antitrypsin Gene P. MONACI, A. NICOSIA and R. CORTESE	149
9. 1	Introduction	1 49
9.2	Alternative Cell-specific Promoters Direct α 1 AT Gene Expression	1 49
9.3	The α 1 AT Gene is Efficiently Expressed and Correctly Regulated in Transgenic Mice	150
9.4	Multiple <i>cis</i> -acting elements are Responsible for the Tissue-specific Expression of $\alpha 1 \text{ AT}$ Promoter in Human Hepatoma Cell Lines	151
9.5	The Same <i>cis</i> -acting Elements are Responsible for α 1 AT Promoter Activity <i>in vivo</i> and <i>in vitro</i>	1 52
9.6	Transcription from the α 1AT Promoter in Liver Nuclear Extract is Dependent on the Presence of Liver-specific Transcriptional Factors	155
9.7	LF-A1 and LF-B1 Play a Role in the Liver-specific Expression of Several Genes	156
9.8	Is a 1 AT Transcription also Negatively Controlled?	158
9.9	Modular Structure of Liver-specific Promoters	1 60
9.10	The Organization of the Mouse α 1-Antitrypsin Promoter	1 60
9. 11	Conclusions	161
	Acknowledgements	1 62
	References	1 62

10	The Regulation of Albumin Gene Expresison in Mammals P. Herbomel and M. Yanıv	165
1 0 .1	Introduction	165
10.2	Temporal and Spatial Distribution of Albumin and AFP Expression in	
	Rodents	166
10.2.1	Liver	166
10.2.2	Yolk Sac	167
10.2.3	Other Organs	167
10.3	Chromatin Structure of the Albumin/AFP Locus	168
10.3.1	General Sensitivity of the Albumin/AFP Locus	1 68
10.3.2	Hypersensitive Sites at the AFP Locus	1 68
10.3.3	Hypersensitive Sites at the Albumin Locus	1 69

10.4	Transgenic Mice	169
10.5 10.5.1 10.5.2 10.5.3 10.5.4	Hepatoma Cell Lines and Their Genetics Dedifferentiation of Hepatocytes in Culture The H4II Family The Extinction Phenomenon Effect of Ploidy: The Reexpression/Activation Phenomenon Transcription and State of the Albumin Gene in the H4II Family	170 170 171 172 173 173
10.6 10.6.1	The Albumin Promoter: Studies in Cell Culture	174
10.6.2 10.6.3 10.6.4	Promoter Activity of a Transfected Albumin Promoter in Hepatoma Cell Lines of Other Origins Activation of the Albumin Promoter by the SV40 Enhancer Functional Anatomy of the Albumin Promoter	174 175 176 176
10.7 10.7.1 10.7.2	The Albumin Promoter: <i>in vitro</i> Studies Tissue Specific <i>in vitro</i> Transcription Correlation of <i>in vivo</i> and <i>in vitro</i> Binding Studies with Nuclear	179 179
10.7.3 10.7.4	Factors Identity of the Factors Involved APF/HNF-1 Versus V-APF/V-HNF-1	179 180 181
1 0.8	Addendum	182
	Acknowledgements	183
	References	183
11	The Chicken Lysozyme Gene A.E. SIPPEL and R. RENKAWITZ	1 85
11.1	Introduction	185
11 .2	The Chromatin Domain of the Active Chicken Lysozyme Locus	186
11.3	Steroid Regulation	1 87
11.4	The E-0.2 kb Enhancer	188
11.5	The Silencer Elements S-0.25 kb, S-1.0 kb and S-2.4 kb	19 1
11.6	The E-2.7 kb Enhancer	194
11.7	The E-6.1 kb Enhancer	194
11.8	Conclusions and Prospects	1 96
	Acknowledgements	197
	References	1 97

XIV	Table	of Contents
-----	-------	-------------

12	Tissue Specific Alternative Splicing in the Troponin T Multigene Family R.E. BREITBART and B. NADAL-GINARD	199
12.1	Introduction	1 99
12.1.1	Overview of Alternative RNA Splicing	1 99
12.1.2	Role of Troponin T in the Calcium Regulation of Muscle Contraction .	200
12.2	Genetic Basis of Troponin T Isoform Diversity	20 1
12.2.1	A Multigene Family Encodes Fiber Type Specific Troponin T Isoforms .	201
12.2.2	Organization of the Skeletal Fast Troponin T Gene	201
12.2.3	Organization of the Cardiac Troponin T Gene	203
12.2.4	Divergent Splicing Schemes Among Several Troponin T Genes	204
12.3	Tissue Specific Regulation of Troponin T Expression	205
12.4	Mechanisms of Combinatorial and Mutually Exclusive Splicing	207
12.4.1	Problem of Splice Site Selection	207
12.4.2	The Default Splicing Pattern	207
12.4.3	Local cis Sequences Specify Alternative and Default Splicing	208
12.4.4	Mutually Exclusive Splicing of TnT _f Exons 16 and 17	208
12.4.5	Steric Hindrance Model for Mutually Exclusive Splicing	209
12.4.6	Combinatorial Splicing of the TnT _f Cassettes Exons 4-8	211
12.4.7	Cell Specific Splicing Environments	211
12.5	Evolutionary and Physiological Significance of Alternative Splicing in	
	the Troponin T Gene Family	212
12.6	Summary	213
	References	213
	Index	217

.