CONTENTS

THE	
	Ramming pastes
	Cathode blocks
	Sidewall blocks
	Ceramic sidewall materials
	Carbon glues
REF	RACTORIES AND INSULATION
	Metallurgical alumina
	Firebricks
	Composite or sandwich insulation
	Some properties of commercial refractory
	and insulation materials
	High alumina bricks
	Chamotte
	Moler bricks
	Calcium silicate
	Vermiculite
DIF	FUSION AND PENETRATION BARRIERS
	Physical barriers
	Chemical barriers
STE	EL SHELLS AND CRADLES
INS	TALLATION
	Collector bar connection
	Carbon lining installation
	Installation of refractories and insulation
	REFERENCES

Bibliografische Informationen

http://d-nb.info/891032436

	Preheating methods	47
	Ramming paste	49
	Anode bake-out	49
	Resistance preheating	49
	Liquid metal	52
	Indirect methods	56
	GENERAL START-UP FEATURES	59
	OPERATION	62
	Temperature	62
	Ledge formation	63
	Potholes and cracks	63
	Cathodic voltage drop	63
	POTLIFE PREDICTION	72
	REFERENCES	78
		70
		79
	Actions in the carbon Lining	79
	Oxidation of sidelining	20
	Abresies	95
	Abrasion	00
	Combined mechanical and chemical erosion	00
		86
		95
	Reactions with bath	95
	Reaction with aluminium	97
	Reactions in ceramic sidewall materials	98
	REFERENCES	100
IV.	PHYSICAL CHANGES DURING CELL OPERATION	101
	THERMAL EXPANSION AND SHRINKAGE	101
	Cathode blocks	101
	Ramming paste	102
	Collector bar and steel shell	105
	Refractories and insulation	106

.

Electrical resistivity	108
Thermal conductivity	109
CHEMICALLY INDUCED DIMENSIONAL CHANGES	111
Sodium intercalation	111
Collector bar	115
CATHODE HEAVING	115
Vertical expansion gradients	116
Salt crystallization	117
Material conversion	118
Movement restraints	119
Cathode carbon strength	122
REFERENCES	123
V. CHARACTERIZATION OF CATHODE MATERIALS	125
STANDARD CHARACTERIZATION OF	125
CARBONACEOUS MATERIALS	
Survey of standard test methods	126
Sampling	128
Apparent density	130
Open porosity	131
Pyknometric density	131
Total porosity	132
Electrical resistivity	132
Thermal conductivity	134
Thermal expansion	135
Mechanical properties and geometry	135
Compressive strength	136
Tensile strength	137
Bending strength	137
Young's modulus	140
Ash content	142
Green apparent density	142
Binder content	143
Granulometry	143

STANDARD TESTS FOR REFRACTORIES AND	145
Pyrometric cone equivalent (PCE)	145
	146
Load testing at elevated temperatures	147
Modulus of runture (MOR) at elevated temperatures	150
Mineralogic identification	151
	151
	152
Thermal expansion and shrinkade	153
Thermal conductivity at elevated temperatures	154
Thermal shock	156
	158
Abrasion resistance of carbon during electrolysis	158
Aluminium carbide formation	161
Oxidation resistance of carbon	161
Expansion of carbon due to sodium penetration	161
Bate of sodium penetration in carbon	163
Chemical resistance of carbon towards sodium	164
Characterization of graphitization by X-ray diffraction	167
Characterization of graphitization by intercalation	169
Microscopy	171
High temperature strength testing	178
Compaction characteristics of ramming paste	179
Density control during installation	182
Nuclear magnetic resonance (NMR)	184
Baking loss	184
Penetration resistance of refractory and insulation	186
Fluoride vapour resistance of refractory and	188
insulation materials	
OVERVIEWS	189
Test methods	189
Compressive strength	191

•

	Mechanical faults	191
	Electrical resistivity	191
	Thermal conductivity	191
	Thermal expansion/shrinkage	191
	Oxidation resistance	191
	Chemical sodium resistance	191
	Compaction tests	191
	Selected properties for cathode materials	192
	LIST OF ABBREVIATIONS	196
	REFERENCES	198
VI.	CATHODE FAILURES	203
	BOTTOM FAILURES	204
	Spalling	204
	Excessive surface wear	206
	Potholes	207
	Seam mix shrinkage	209
	Stratification	212
	High transient temperatures	213
	Bottom cracking	214
	STEEL SHELL	226
	Steel shell strength and stiffness	227
	Shell repair	229
	SIDEWALL FAILURE	230
	Sidewall oxidation	230
	Sidewall erosion	233
	Sodium exfoliation	236
	Heat transfer disruptions	238
	COMPLEX FAILURE SCENARIOS	238
	Metal penetration	238
	Aluminothermic reactions	244
	TEMPORARY SHUTDOWN, POT RESTART AND	251
	POT REPAIR	
	Potlife reduction	252

Complete shutdown and restart procedures	253
Partial shutdown and restart procedures	2 5 5
Pot repair	255
REFERENCES	257
VII. SPENT POTLINING DISPOSAL	259
SPENT POTLINING MATERIAL	259
Background	259
Handling of SPL	262
Watering reactions	264
TREATMENT OF SPL	266
Slag and metal additives in iron- and steel industry	266
Fuel supplement in cement manufacture	267
Fluidized-bed combustion	270
Gypsum sheating process	271
Leaching/leachate treatment process	272
Cryolite regeneration process	274
AIF ₃ reclamation process	276
Pyrohydrolysis	277
Pyrosulpholysis	279
ALUMINIUM CELL ANODE ADDITIVES	282
REFERENCES	284
VIII. NEW TRENDS AND DEVELOPMENTS	287
INTRODUCTION	287
CHOICE OF CARBON MATERIALS	288
GLUING	288
INERT NON-CONDUCTING MATERIALS	289
MATHEMATICAL MODELS	289
INERT CATHODES	289
A CLOSED DIMENSIONALLY STABLE CELL	292
REFERENCES	294

/