Contents

1. Evolution of Quantum Theory

	By '	W. Sch	ommers	1	
	1.1	Classi	cal Pictures of Reality	1	
		1.1.1	Mythological and Intellectual Pictures	1	
		1.1.2	Mechanistic View of the World	2	
	1.2	From	Classical to Quantum Mechanics	6	
		1.2.1	Planck's Constant	7	
		1.2.2	Einstein's Picture of Light	11	
		1.2.3	The Structure of Atoms	12	
		1.2.4	Matter Waves, Schrödinger's Wave Equation, and Matrix		
			Mechanics	17	
		1.2.5	Born's Probability Interpretation	25	
		1.2.6	Uncertainty	28	
		1.2.7	The Principle of Complementarity	30	
	1.3	Theor	ries of Measurement: Brief Remarks	31	
			Objectivity	31	
			The Measurement Problem	32	
		1.3.3	Theories of Measurement: Final Comments	38	
	1.4		nary	39	
	App	oendix	1.A. Classical Mechanics: Some Basic Remarks	4 1	
		1 .A. 1	The Principle of Least Action and Lagrange's Equations	41	
		1.A.2	Newton's Equations	42	
		1. A.3	Hamilton's Equations	43	
			The Hamilton-Jacobi Equations	44	
	Ap	Appendix 1.B. The Relation Between Schrödinger's Equations and			
			ical Mechanics	46	
	Ref	erences	·	47	
2.			Paradox. Roots and Ramifications		
			Eberhard (With 4 Figures)	49	
	2.1		bate Lasting More Than Fifty Years	49	
			Are There Faster Than-Light Effects in Quantum Phenomena?	49	
		2.1.2	Einstein's Point of View	51	

2.1.2 Einstein's Point of View512.1.3 Dissenting Voices542.1.4 The Verdict of Experiment562.2 A Far-Reaching Argument58

		221	Example of an EPR-Bohm Experiment	58
			How to Compute the Predictions in Quantum Theory	62
			Reality and Lorentz Invariance	65
			-	68
			Bell's Theorem	
	~ ~		Analogy with a Spy Story	71
	2.3		nple of Possible Solutions	74
			Experimental Loopholes	74
			Giving up on Conventional Concepts of Reality	76
			Fundamental Space-Time Restframes	78
			How a Model with Rudimentary Locality Can Work	80
			Conclusions	85
	Refe	erences	• • • • • • • • • • • • • • • • • • • •	87
3.		-	bility and the Tentative Descriptions of Reality	
	-		spagnat (With 6 Figures)	89
			luction	89
	3.2		sm and Separability	90
			Realism	90
		3.2.2		92
		3.2.3	Separable "Conception of the World"	95
	3.3		ability and Quantum Physics	96
		3.3.1		96
		3.3.2	····· ····· ··························	
			Description of States	98
			How to Prove Nonseparability	101
			A Few Words of Caution	103
		3.3.5	Quantum Mechanics Does Not Allow Superluminal Signalling	104
	3.4		oof of the Principle of Separability	1 05
			Derivation of the Bell-CHSH Inequalities	106
		3.4.2	Relativity and the Bell-CHSH Inequalities	111
		3.4.3		114
		3.4.4	1	11 9
		3.4.5	The "Principle of Inductive Causality", its Motivation	
			and Function	120
		3.4.6	The Generality of the Bell Inequalities	124
	3.5	Coun	terfactuals and Influences-at-a-Distance	1 26
		3.5.1	Strict Implication and Counterfactuals	127
		3.5.2	A Few Applications for These Concepts	129
		3.5.3	An Application to the Everett "Relative State" Theory	132
		3.5.4	In What Sense Can We Speak of Superluminal Propagation	
			of Influences?	134
		3.5.5	A Nonrelativistic Approach	135
		3.5.6	What About the Relativistic Case?	140
	3.6	Some	Problems Bearing on Causality	142
		3.6.1	A Remark on Delayed Choice Experiments	142

Contents XIII

		3.6.2	Remarks on Relativistic Covariance and its Meaning	144
		3.6.3	On Measurement Time Asymmetry and the Nonexistence	
			of Superluminal Signals	145
	3.7	Tenta	tive Descriptions of an "Independent Reality"	150
			Assumption Q Made	151
		3.7.2	Assumption Q Not Made	158
	3.8	Concl	lusion	159
	App	endix	3.I. Some Disproved Objections to the Bell Theorem	1 60
			ote	1 64
	App	endix	3.II	165
	Refe	erences	8	1 66
4.			c Model for Quantum Theory With a Locality Property	
	•		Eberhard (With 4 Figures)	169
	4.1		duction	1 69
			Background and Scope	169
			Basic Features of the Model	171
			Possible Experimental Evidence	172
	4.2	Field	Theory and Translation-Invariant Operators	172
		4.2.1	The Density Matrices for the Universe and for an Isolated	
			Quantum System	173
			Measurement Probabilities and Collapses	1 74
			Translation Invariant Operators	175
			The Translation-Invariant Formalism	177
			Lorentz Invariance	178
	4.3		Model and its Predictions	179
			Probabilities of Measurement Results	180
			Equations for Time Evolution	181
			Collapses of the Quantum Matrix	183
		4.3.4	Role of the Spatial-Compatibility Condition in Collapses .	184
		4.3.5		1 86
	4.4	Prop	erties Related to Locality	187
		4.4.1		187
		4.4.2		189
		4.4.3	······································	190
		4.4.4		1 92
		4.4.5		1 94
			Superluminous Communication	196
	4.5	Impa	act on Measurement Theory	199
		4.5.1	Locality of Measurement Processes	1 99
		4.5.2	-	201
		4.5.3		203
	4.6		clusion	204
			4.A. A Partial Derivative Equation for $C(x, t)$	205
	Ap	pendix	4.B. Conservation of the Spatial-Compatibility Condition .	207

		pendix 4.C. Generating the Spatial-Compatibility Condition	209
	Ap	pendix 4.D. Collapses Due to Two Measurements Closely	
		Spaced in Time	2 11
	Ref	erences	214
5.	-	ce-Time and Quantum Phenomena	
		W. Schommers (With 1 Figure)	217
		Introduction	217
		Time-Operator Within Usual Quantum Theory	219
	5.3	Superoperator Formalism	222
		5.3.1 Being and Becoming: General Remarks	222
		5.3.2 Liouvillian Formulation of Quantum Mechanics	223
		5.3.3 Extension of the Formalism of Classical and Quantum	
		Mechanics	225
		5.3.4 Superoperator for the Time	227
		5.3.5 "Picture of Reality" Within the Superoperator Formalism	229
	5.4		
		With Mach's Principle	232
		5.4.1 Space-Time and Mach's Principle	232
		5.4.2 Other Spaces	233
		5.4.3 The Influence of Planck's Constant	234
		5.4.4 Operators	236
		5.4.5 Intermediate Spaces	239
		5.4.6 A New Complementarity	240
		5.4.7 Determination of $\psi(\mathbf{r}, t)$ and $\psi(\mathbf{p}, E)$	241
		5.4.8 Meaning of the Wave Functions	246
		5.4.9 Eigenvalues	246
		5.4.10 The Role of Time	247
		5.4.11 Being and Becoming	251
		5.4.12 Particles and Waves	255
		5.4.13 Wave Function and Measurement	256
		5.4.14 Remarks Concerning the Superposition Principle	258
		5.4.15 Reality and Basic Reality	261
		Summary and Final Remarks	263
		pendix 5.A. On the Second Law of Thermodynamics	264
		pendix 5.B. A Non-absolute Space-Time	266
		pendix 5.C. On the Uncertainty Relation for Energy and Time	273
		pendix 5.D. On the Definition of Being and Becoming	275
	Ret	erences	276
6	Wa	ve-Particle Duality: Recent Proposals for the Detection	
		Empty Waves. By F. Selleri (With 16 Figures)	279
	6.1	Introduction	279
	6.2		280
	6.3		289
	0.5	The copennation-contingent tormulation of baunty	207

6.4 Delayed-Choice Experiments	294
6.5 Noteworthy Experimental Facts	298
6.6 Empty-Wave Stimulation of Photon Emission	303
6.7 Theories of Stimulated Emission	308
6.8 Experimental Discriminations	316
6.9 Further Experiments for the Detection of Empty Waves	320
Note Added in Proof	329
References	330
Additional References	331
Subject Index	333