CONTENTS

<u>O. INTRODUCTION</u>	7
1. INITIAL VALUE PROBLEMS IN BANACH SPACES	9
1.1. Functions valued in Banach spaces	9
1.2. Differentiation of functions valued in Banach spaces	10
1.3. Integration of functions valued in Banach spaces	11
1.4. Properties of the integral	12
1.5. Solution of initial value problems in Banach spaces	13
1.6. Uniqueness of the solution of initial value problems	16
1.7. Initial value problems in the case of infinite systems of	
ordinary differential equations	1 7
2. SCALES OF BANACH SPACES	19
2.1. The behaviour of the derivative of a holomorphic function in	
compact sub s ets	19
2.2. Definition of scales of Banach spaces	20
2.3. Generalized Cauchy-Riemann operators in scales of Banach spaces	22
<u>2.4.</u> Dual scales	23
3. SOLUTION OF INITIAL VALUE PROBLEMS IN SCALES OF BANACH SPACES .	26
3.1. Differential equations in scales of Banach spaces	26
3.2. Some preliminaries	27
3.3. The method of successive approximations in scales of Banach	
spaces	31
3.4. Construction of sequences ε_1 , ε_2 , and δ_1 , δ_2 ,	38
3.5. Existence of solutions of initial value problems in scales of	
Banach spaces	41
3.6. Lower bounds for the length of the convergence interval	43
3.7. Uniqueness of the solution of initial value problems in scales	
Banach spaces	44
3.8. Linear differential equations in scales of Banach spaces	48
4. THE CLASSICAL CAUCHY-KOVALEVSKAYA THEOREM	51
4.1. Statement of the problem	51
4.2. Reduction of Cauchy-Kovalevskaya systems to quasilinear first	
order systems	55
4.3. Proof of the classical Cauchy-Kovalevskaya theorem	59
4.4. A uniqueness theorem	65
4.5. A real variant of the classical Cauchy-Kovalevskaya theorem .	65

<u>5. Tł</u>	<u>HE HOLMGREN THEOREM</u>	69
5.1.	Statement of the problem	69
5.2.	Proof of the Holmgren theorem	70
5.3.	Further remarks on the classical Holmgren theorem	77
5.4.	A generalization of the Holmgren theorem	81
<u>6. B</u> A	ASIC PROPERTIES OF GENERALIZED ANALYTIC FUNCTIONS	84
6.1.	Partial complex differentiations in the classical sense and	
	according to Sobolev	85
6.2.	Complex integral operators connected with the partial complex	
	differentiations	89
6.3.	Generalized analytic functions	9 9
6.4.	Associated differential operators	104
6.5.	Differentiability properties of associated differential	
	operators	110
<u>7. I</u>	NITIAL VALUE PROBLEMS WITH GENERALIZED ANALYTIC INITIAL	
FU	<u>INCTIONS</u>	112
7.1.	Statement of the problem	112
7.2.	A lemma on an overdetermined first order system	113
7.3.	An inverse problem for associated differential operators	11 7
7.4.	Construction of solutions with prescribed generalized analytic	
	initial functions	122
7.5.	Uniqueness theorems for initial value problems with	
	generalized analytic initial functions	126
<u>8. C(</u>	ONTRACTION-MAPPING PRINCIPLES IN SCALES OF BANACH SPACES	128
8 1	W. Walter's elementary proof of the classical Cauchy-	
<u></u>	Kovalevskava theorem	128
8.2.	Generalized analytic functions depending on time in conical	
<u></u>	domains	144
8.3.	A weighted norm for functions depending on time in scales of	
	Banach spaces	153
<u>9. Fl</u>	JRTHER EXISTENCE THEOREMS FOR INITIAL VALUE PROBLEMS IN	
<u>S(</u>	CALES OF BANACH SPACES	158
9.1.	Scales of q-holomorphic and generalized q-holomorphic vectors	158
<u>9.2.</u>	Scales of pseudoholomorphic functions in L. Bers' sense	160
9.3.	Commentary on connections between the Cauchy-Kovalevskaya	
	theorem and other problems in Mathematical Analysis	161
9.4.	Scales of Banach spaces in the case of more than 2 spacelike	
	variables	165

•

5

0 5																
9.3.	The Ovsyannikov scale	•••	•••	• • •	•	• •	•		•	•	•	•	•	•	•	166
9.6.	Solution of initial v	alue	prob	lems	in	sca1	es	of	Ba	ana	hch	1 5	spa	ace	es	
	by Euler's polygonal	line	meth	od .												167
9.7.	The special case of o	rdina	iry d	iffer	rent	ial	eq	uat	io	ıs						172
9.8.	Initial value problem	s for	equ	ation	is w	ith	si	ngu	1a1	r						
	coefficients															172
9.9	Cauchy-Kovaleyskava t	heore	me f	or a	vec	tor-	va	••• 1110		• • i =	10	•	•	•	•	
	warichla			or a			vu	100		- 11						172
		•••	•••	• • •	•	•••	•	• •	•	•	•	•	•	•	•	173
10.	FURTHER UNIQUENESS THE	OREMS			•											177
10.1	. Uniqueness theorems	for i	niti	al va	lue	pro	b1	ems	ir	ı h	ig	ghe	er			
10.1	Uniqueness theorems	for i	niti	al va	lue	pro	b1	ems	ir	1 h	ig.	ghe •	er			177
<u>10.1</u>	<u>.</u> Uniqueness theorems dimensions . Permanence principle	for i ••• s••	niti	al va	lue	pro	ьı	ems	ir •	1 h	ig	ghe •	er •	•	•	177
<u>10.1</u> <u>10.2</u> 10.3	<u>.</u> Uniqueness theorems dimensions <u>.</u> Permanence principle . Uniqueness in depend	for i s . ence	niti ••• •••	al va •••• ••••	lue	pro		ems • •	ir •	1 h • •	ig	,he	er •	•	•	177 177 178
<u>10.1</u> <u>10.2</u> <u>10.3</u>	 Uniqueness theorems dimensions Permanence principle Uniqueness in depend A generalized Gronwa 	for i s. ence	.niti ••• •••	al va	lue ale	pro		ems ••• •••	ir • •	n h • •	ig	ghe • •	er	•	•	177 177 178
10.1 10.2 10.3 10.4	 Uniqueness theorems dimensions Permanence principle Uniqueness in depend A generalized Gronwa 	for i s . ence 11 le	niti ••• on t	al va •••• he sc for d	lue ale liff	pro	bl	ems • • • • al	ir • • ine	nh equ	ig	she	er ie	• • •	•	177 177 178
<u>10.1</u> <u>10.2</u> <u>10.3</u> <u>10.4</u>	 Uniqueness theorems dimensions Permanence principle Uniqueness in depend A generalized Gronwa in scales of Banach 	for i s . ence 11 le space	niti ••• on t mma	al va he sc for d 	lue ale liff	pro	bl	ems • • • • al	ir • • ine	n h equ	ig	ghe lit	er ie		•	177 177 178 179
10.1 10.2 10.3 10.4 REFÉ	 Uniqueness theorems dimensions Permanence principle Uniqueness in depend A generalized Gronwa in scales of Banach RENCES 	for i s . ence 11 le space	niti ••• on t emma es •	al va he sc for d 	alue ale liff	pro eren	bl	ems al 	ir • • • •	nh equ	nig	ghe lit	r • • • •	• • • •	•	177 177 178 179 181
10.1 10.2 10.3 10.4 REFÉ	 Uniqueness theorems dimensions Permanence principle Uniqueness in depend A generalized Gronwa in scales of Banach RENCES RENCES 	for i ence 11 le space 	niti • • on t mma •s •	al va • • • • • • • • • • • • • • • •	alue ale liffo	pro	bl.	ems • • al • •	ir • • •	n h • • • • •	119	she	er • • • • •	•••••••••••••••••••••••••••••••••••••••	•	177 177 178 179 181