Contents

1.	Symi	metries in Quantum Mechanics	1
	1.1	Symmetries in Classical Physics	1
	1.2	Spatial Translations in Quantum Mechanics	11
	1.3	The Unitary Translation Operator	12
	1.4	The Equation of Motion for States Shifted in Space	13
	1.5	Symmetry and Degeneracy of States	15
	1.6	Time Displacements in Quantum Mechanics	19
	1.7	Mathematical Supplement: Definition of a Group	21
	1.8	Mathematical Supplement: Rotations and their Group	
		Theoretical Properties	23
	1.9	An Isomorphism of the Rotation Group	26
		1.9.1 Infinitesimal and Finite Rotations	27
		1.9.2 Isotropy of Space	29
	1.10	The Rotation Operator for Many-Particle States	34
		Biographical Notes	35
2.	Angular Momentum Algebra Representation of Angular Momentum		
	Oper	rators – Generators of SO(3) –	37
	2.1	Irreducible Representations of the Rotation Group	37
	2.2	Matrix Representations or Angular Momentum Operators	41
	2.3	Addition of Two Angular Momenta	46
	2.4	Evaluation of Clebsch-Gordan Coefficients	49
	2.5	Recursion Relations for Clebsch-Gordan Coefficients	50
	2.6	Explicit Calculation of Clebsch-Gordan Coefficients	51
	2.0	Biographical Notes	56
3.	Matl	hematical Supplement: Fundamental Properties of Lie Groups	57
	3.1	General Structure of Lie Groups	57
	3.2	Interpretation of Commutators as Generalized Vector Products,	
		Lie's Theorem, Rank of Lie Group	63
	3.3	Invariant Subgroups, Simple and Semisimple Lie Groups, Ideals	65
	3.4	Compact Lie Groups and Lie Algebras	69
	3.5	Invariant Operators (Casimir Operators)	70
	3.6	Theorem of Racah	70
	3.7	Comments on Multiplets	70
	3.8	Invariance Under a Symmetry Group	72
	3.9	Construction of the Invariant Operators	75

IX

	3.10	Remark on Casimir Operators of Abelian Lie Groups	77		
	3.11	Completeness Relation for Casimir Operators	77		
	3.12	Review of Some Groups and Their Properties	78		
	3.13	The Connection Between Coordinate Transformations and			
		Transformations of Functions	79		
		Biographical Notes	87		
4.	Symmetry Groups and Their Physical Meaning –				
	Gene	ral Considerations	89		
		Biographical Notes	93		
5.	The]	Isospin Group (Isobaric Spin)	95		
	5.1	Isospin Operators for a Multi-Nucleon System	100		
	5.2	General Properties of Representations of a Lie Algebra	104		
	5.3	Regular (or Adjoint) Representation of a Lie Algebra	105		
	5.4	Transformation Law for Isospin Vectors	108		
	5.5	Experimental Test of Isospin Invariance	113		
		Biographical Notes	123		
6.	The l	Hypercharge	125		
		Biographical Notes	129		
7.	The S	SU(3) Symmetry	131		
	7.1	The Groups $U(n)$ and $SU(n)$	131		
		7.1.1 The Generators of $U(n)$ and $SU(n)$	133		
	7.2	The Generators of SU(3)	134		
	7.3	The Lie Algebra of SU(3)	136		
	7.4	The Subalgebras of the SU(3)-Lie Algebra and the Shift Operators	142		
	7.5	Coupling of T-, U- and V-Multiplets	144		
	7.6	Quantitative Analysis of Our Reasoning	145		
	7.7	Further Remarks About the Geometric Form of an SU(3) Multiplet	147		
	7.8	The Number of States on Mesh Points on Inner Shells	147		
_	~	, 			
8.	Quar	ks and SU(3)	155		
	8.1	Searching for Quarks	157		
	8.2	The Transformation Properties of Quark States	158		
	8.3	Construction of all $SU(3)$ Multiplets from the Elementary			
		Representations [3] and [3]	161		
	8.4	Construction of the Representation $D(p,q)$ from Quarks			
		and Antiquarks	163		
		8.4.1 The Smallest SU(3) Representations	165		
	8.5	Meson Multiplets	171		
	8.6	Rules for the Reduction of Direct Products of SU(3) Multiplets	174		
	8.7	U-spin Invariance	176		
	8.8	Test of U-spin Invariance	178		
	8.9	The Gell-Mann-Okubo Mass Formula	180		
	8.10	The Clebsch-Gordan Coefficients of the SU(3)	182		

	8.11	Quark Models with Inner Degrees of Freedom	184
	8.12	The Mass Formula in SU(6)	206
	8.13	Magnetic Moments in the Quark Model	207
	8.14	Excited Meson and Baryon States	209
	8.15	Excited States with Orbital Angular Momentum	211
9.	Repr	esentations of the Permutation Group and Young Tableaux	213
	9.1	The Permutation Group and Identical Particles	213
	9.2	The Standard Form of Young Diagrams	217
	9.3	Standard Form and Dimension of Irreducible Representations	
		of the Permutation Group S_N	219
	9.4	The Connection Between SU(2) and S_N	225
	9.5	The Irreducible Representations of $SU(n)$	227
	9.6	Determination of the Dimension	232
	9.7	The $SU(n-1)$ Subgroups of $SU(n)$	235
	9.8	Decomposition of the Tensor Product of Two Multiplets	237
10.	Math	ematical Excursion. Group Characters	241
	10.1	Definition of Group Characters	241
	10.2	Schur's Lemmas	241
		10.2.1 Schur's First Lemma	241
		10.2.2 Schur's Second Lemma	242
	10.3	Orthogonality Relations of Representations and Discrete Groups	243
	10.4	Equivalence Classes	244
	10.5	Orthogonality Relations of the Group Characters for Discrete	246
	10.0	Groups and Other Relations	240
	10.6	Orthogonality Relations of the Group Characters for the Example	247
	107	of the Group D ₃	247
	10.7	Reduction of a Representation	248
	10.8	Chieron for inteducionity	249
	10.9	Direct Product of Representations	249
	10.10	Mathematical Engineering Croup Integration	250
	10.11	Mathematical Excursion: Group Integration	251
	10.12	The Transition from U(N) to SU(N) for the Example SU(2)	252
	10.13	Internation from O(N) to SO(N) for the Example SO(S)	255
	10.14	Group Characters of Unitary Groups	255
	10.15	Group Characters of Officary Groups	230
11.	Char	m and SU(4)	273
	11.1	Particles with Charm and the SU(4)	275
	11.2	The Group Properties of SU(4)	275
	11.3	Tables of the Structure Constants f_{ijk} and the Coefficients d_{ijk}	070
		for SU(4)	2/9
	11.4	Multiplet Structure of SU(4)	280
	11.5	Advanced Considerations	280
		11.5.1 Decay of Mesons with Hidden Charm	283
		11.5.2 Decay of Mesons with Open Charm	286

		11.5.3 Baryon Multiplets	287
	11.6	The Potential Model of Charmonium	295
	11.7	The SU(4) [SU(8)] Mass Formula	300
	11.8	The Υ Resonances	303
12.	Math	ematical Supplement	307
	12.1	Root Vectors and Classical Lie Algebras	307
	12.2	Scalar Products of Eigenvalues	311
	12.3	Cartan-Weyl Normalization	313
	12.4	Graphic Representation of the Root Vectors	314
	12.5	Lie Algebra of Rank 1	315
	12.6	Lie Algebras of Rank 2	315
	12.7	Lie Algebras of Rank $l > 2$	316
	12.8	The Exceptional Lie Algebras	317
	12.9	Simple Roots and Dynkin Diagrams	317
	12.10	Dynkin's Prescription	319
	12.11	The Cartan Matrix	321
	12.12	Determination of all Roots From the Simple Roots	321
	12.13	Two Simple Lie Algebras	322
	12.14	Representations of the Classical Lie Algebras	323
13.	Speci	al Discrete Symmetries	327
	13.1	Space Reflection (Parity Transformation)	327
	13.2	Reflected States and Operators	329
	13.3	Time Reversal	330
	13.4	Antiunitary Operators	331
	13.5	Many-Particle Systems	335
	13.6	Real Eigenfunctions	335
14.	Dyna	mical Symmetries	337
	14.1	The Hydrogen Atom	337
	14.2	The Group SO(4)	339
	14.3	The Energy Levels of the Hydrogen Atom	340
	14.4	The Classical Isotropic Oscillator	341
		14.4.1 The Quantum Mechanical Isotropic Oscillator	342
15.	Mathematical Excursion: Non-compact Lie Groups		351
	15.1	Definition and Examples of Non-compact Lie Groups	351
	15.2	The Lie Group SO(2,1)	356
	15.3	Application to Scattering Problems	359
Sub	ject I	ndex	363