Inhaltsverzeichnis

Formalistische Definition der Laplace- Transformation	1
Veranschaulichung des Laplaceschen Grundintegrals	2
Präsentation der Sätze und anderen Lösungsmethoden zur Ermittlung von Laplace-Transformierten	5
Berechnungen von Laplace-Transformierten	8
Laplace-Transformierte der Sinusfunktion	10
Andere Darstellung	
einer Sinusfunktion als Laplace-Transformierte	11
Ähnlichkeitssatz	12
Zweiter Verschiebe- oder Dämpfungssatz	14
Laplace-Transformierte einer Stammfunktion F(t)	15
Kapazitiver Widerstand (Kondensator) dargestellt als Laplace-Transformierte Impedanz Z _C	17
Integrationssatz für die Bildfunktion F(p)	18
Erster Verschiebesatz	22
Laplace-Transformation der verschobenen cos-Funktion	24
Ableitung der Formel für periodische Funktionen f(t)	25
Laplace-Transformierte der periodischen Rechteckspannung	27
Laplace-Transformierte der periodischen Dreieckspannung	30
Laplace-Transformierte spezieller Funktionen der Zeit	35
Gaussches Fehlerintegral	55
Laplace-Transformierte von Besselfunktionen	39
Integraldarstellung für die Besselfunktion	
I ₀ (t) = J ₀ (it)	42
Korrespondenzentabelle für Laplace-Transformierte	47
Rücktransformation der Bildfunktion F(p) in den	
Zeitbereich f(t)	70
Veranschaulichung des inversen Laplace-Integrals	57
Konforme Abbildung einer Funktion von z trans- formiert in die p-Ebene	60
Veranschaulichung der Bildfunktion F(p) in der p-Ebene	62
Pole der Funktion F(p)	64
Integration längs der reelen Achse	66
Integration einer Funktion F(p) in der p-Ebene	68
Integration um eine Polstelle p = a	69
Integration längs eines Weges der keine Polstelle p = a einschließt	70

	Residuen	72
	Anwendung des inversen Laplace-Integrals	80
	Rücktransformation einer Arkustangensfunktion von p in den Zeitbereich von t mit Hilfe des inversen Laplace-Integrals	86
	Eine wichtige Formel zur Rücktransformation einer	00
	Didferentiationagets für die Bildfunktion P(n)	90
1	Distance formation since templicienter Lampithung_	92
	naturalisfunktion von p in den Zeitbereich von t mit Nilfe des obigen Differentiationssatzes	93
	Partialbruchzerlegung	96
	Faltungsintegral	100
	Laplace-Transformierte für die Ableitung einer Zeitfunktion f(t)	105
	Induktiver Widerstand (Spule) dargestellt als Laplace-Transformierte Impedanz Z ₇	109
	Rechenbeispiel einer schwierigen gewöhnlichen linearen inhomogenen Dgl der dritten Ordnung, die mit Hilfe der	
	Laplace-Transformation gelöst wird	110
	Verhalten von f(t) und F(p) bei Null und Unendlich	112
	Anwendung der Laplace-Transformation auf elektrische Schaltungen	114
	Rechenbèispiel eines elektrischen stationären Schaltkreises mit R, L und C	116
	Einschaltvorgang an einer Reihenschaltung von R und L	119
	Abschaltvorgang an einer Reihenschaltung von R und L	123
	Einschaltvorgang an einer Reihenschaltung von R und C	125
	Abschaltvorgang an einer Reihenschaltung von R und C	128
	Einschaltvorgang an einer Gruppenschaltung von R und C	130
	Einschaltvorgang an einer Gruppenschaltung von R, C und L	134
	Einschaltvorgang an einer Reihenschaltung von R und C mit angelegter komplizierter Eingangsspannung	139
	Einschaltvorgang eines vermaschten geschlossenen Netzwerks	145
	Induktive Kopplung zweier Schwingkreise	152
	Ergänzungen zur Laplace-Transformierten einer Stamm- Funktion F(t)	163
	Einschaltvorgang an einer Reihenschaltung von R und C, wobei eine Spannung u an C auftritt, bevor der Einschalter S eingelegt wird	164
	Anwendung der Laplace-Transformation als ideale und all- gemeinste Berechnungsmethode von elektrischen Schalt- kreisen	166
	Ringchaltworgang an einer Reihenschaltung won D C und	100
	L mit angelegter sinusförmiger Spannung	175

Berechnungen und Analysen von Netzwerken	182
Einteiliges RC-Netzwerk als Tiefpaß	190
Zweiteiliges BC-Tiefpaßfilter	194
Dreiteiliges RC-Tiefpaßfilter	199
Bode- Diagramm für RC-Tiefpaßfilter n-ter Ordnung	204
RC- Tiefpaßfilter als Spannungsintegrator	208
Bode- Diagramm des Butterworth- Tiefpaßfilters der Ordnung n = 2	209
Bode- Diagramm der Butterworth- Tiefpaßfilter der Ordnung n = 1 bis n = 5	214
Gesetzmäßigkeiten zur Erstellung von Dämpfungskurven von Butterworth-Tiefpaßfiltern beliebiger Ordnung	215
Berechnung eines komplizierten Netzwerks	217
Vereinfachte Lösungsmethode von Kettenleitern n-ter Ordnung mit identischen Gliedern	224
Allgemeine Koeffiziententabelle für eine zehnteilige Kettenschaltung mit identischen Gliedern	226
Übertragungsfunktionen von Kettenleitern	227
Vereinfachte Lösungsmethode von Kettenleitern der Ordnung n = 5 mit nichtidentischen Gliedern	231
Analyse einer komplizierten Kettenschaltung. U _A / U _E	
dargestellt in Betragsform	236
Ermittlung der Übertragungsfunktion eines komplizierten Netzwerks	238
Ermittlung des Übertragungswiderstands der Leitung und der Eingangsimpedanz eines komplizierten Netzwerks	241
Netzwerk-Synthese	245
Konstruktionen eines Butterworth-Tiefpaßfilter-Systems der Ordnungen n = 1 bis n = 10 normiert für einen 3dB Abfall bei der Grenzfrequenz w = 1	245
Ermittlung des 3dB-Punktes bei der Grenzfrequenz w _o = 1	246
Tabelle der Dämpfungswerte für Butterworth-Tiefpaßfilter n = 1 bis n = 10 bei w = 2 🎓 dB/Oktave	247
Butterworth-Tiefpaßfilter der Ordnung n = 1	248
Definition des Durchlaß- und des Sperrbereichs von Filtern	252
Butterworth- Tiefpaßfilter der Ordnung n = 2	256
" " n = 3	• 250
n n n a 4	•• 267
u " n = 5	

Erläuterung	zur Findung der	r Lage der	Polstell	en in d	er	
p-Ebene von	Butterworth-Fu	aktionen	•••••	•••••	••••	274
Butterworth-	-Tiefpaßfilter (ier Ordnung	; n = 6 .	•••••	•••••	278
			n = 7 •	•••••	• • • • • • • • •	283
	T		n = 6.	• • • • • • •	• • • • • • • • • •	288
I	1	n 11	n = 9 .	• • • • • • •	••••	292
1	1	n ti	n = 10	• • • • • • •	•••••	299
Modifiziert	e Butterworth-T:	iefpaßfilte	er	•.•.• • • • •	••••	307
Butterworth- Tiefpaßfilte	-Hochpaßfilter ern durch Varia	entwickelt blentransfo	aus den rmation	gezeigt von p	en ••••••	314
Tiefpaß-Band	ipaßtransformat:	ion (Butte	rworth)	• • • • • •	• • • • • • • • •	316
Tiefpaß-Band	isperrentransfo	rmation (E	lutterwor	th)	• • • • • • • • •	325
Vorbereitend Butterworth-	ie Überlegungen -Tiefpaßfiltern	zur Konstr	uktion v	on akti	.ven	350
Konstruktion der Ordnung	nen von aktiven n = 2 bis n = (Butterwort	h-Tiefpa	Bfilter	n	77- 72h
Aktives Buti	terworth-Tiefpa	Bfilter der	Ordnung	n = 2		227
n	n	u n	"	n = 3		224
	Ħ	11	n	n - 4	•••••	227
n	81	н	n	n = 5	•••••	220
11	83	n	n	<u> </u>	•••••	229
Aktive Butto n = 12, auf Lösungsverfa	erworth-Tiefpaß gezeigt nach ei ahren zur Besti	filter der nem noch we mmung der W	Ordnung eiter ver Werte von	n = 7 t einfach)is Iten	343
Aktives But	terworth-Tiefpa	ßfilter der	· Ordnung	; n = 7.		343
Wertetabelle der Ordnunge	en der aktiven i en n = 8 bis n	Butterworth = 10	n-Tiefpaß	filter	•••••	345
Vergleich de paßfilters	es aktiven - zu n = 11, hinsich	m passiven tlich der 1	Butterwo Ermittlun	rth- Ti Ig zur H	lef- Be-	
stimmung de:	r reaktiven Ele	mente	• • • • • • • • •	•••••	••••	346
Aktives But	terworth- Tiefp	aßfilter n	= 12	• • • • • • •	•••••	350
Aktive Butt	erworth- Hochpa	Bfilter n •	2 bis n	. = 12 .	••••	353
Allgemeingü worth- Tief	ltige Berechnun - und Hochpaßf	gsformeln i ilter (3dB	für aktiv bei f _o).	e Butte	9 r-	355
Dimensionie: Tief- und Ha allgemeinen	rung von indivi ochpaßfiltern h Berechnungsfor	duellen akt öherer Ordi meln	iven But hung mit	terwort Hilfe d	;h- ler	359
Aktives But mit Einfac	terworth-Tiefpa hmitkopplung fü	Bfilter den r den Einsa	r Ordnung atz im ME	; n = 2 IZ- Bere	eich	380
Aktives Tie: der Ordnung	fpaßfilter mit : n = 2	Mehrfachge	genkopplu	ng	••••	365

Bessel- Tiefpaßfilter	367
Konstruktion eines Bessel-Tiefpaßfilters der Ordnung n = 2	372
n n n n n n = 3	375
Direktvergleich von Bessel-Tiefpaß- mit Butterworth- Tiefpaßfiltern bezüglich einer normierten 3dB Grenz- frequenz bei w. = 1	378
Passives Bessel- Tiefpaßfilter der Ordnung n = 2,	381
Actives Tiefpaßfilter $n = 2$	<i>.</i>
normiert für 3dB bei w _n = 1	382
Andere Darstellung des Bessel- Tiefpaß	384
Lage der Polstellen der Bessel- Tiefpaßfilter	388
Aktive Bessel- Tief- und Hochpaßfilter (3dB bei $w_0 = 1$)	389
Allgemeingültige Berechnungsformeln für aktive Bessel- Tief- und Hochpaßfilter (3dB bei w = 1)	390
Charakteristische Unterscheidungen, Butterworth-	
Bessel- und Tschebyscheff- Tiefpaßfilter	392
Butterworth-Tiefpaßfilter	392
Bessel-Tiefpaßfilter	393
Prozentuale Gegenüberstellung der Filtertypen	
schwingens ihrer Sprungantworten	3 9 4
Tschebyscheff-Tiefpaßfilter	395
Tschebyscheffsche Dgl. mit ihren daraus resultieren-	206
den Polynomen T _n (w)	590
Verläufe der Tschebyscheff-Polynome	397
Tschebyscheff-Funktion für Netzwerk-Synthese	397
Lage der Polstellen von Tschebyscheff-Tiefpaßfiltern	399
Physikalische Übertragungsfunktionen w(p) mit der	402
weiligkeit $\mathcal{C} = 0, \mathcal{C}$ und $\mathcal{C} = 0, \mathcal{I}$	402
Butterworth- und Bessel-Tiefpaßfiltern bezüglich einer	
normierten 3dB Grenzfrequenz bei w ₀ = 1	403
Passive Tschebyscheff-Tiefpaßfilter der Ordnung n = 2 und n = 3 (3dB bei w ₀ = 1)	
Welligkeit: 0,5dB und 3dB	405
Aktive Tschebyscheff-Tiefpaßfilter der Ordnung $n = 2$ bis $n = 6$ (3dB bei $w_0 = 1$)	
Welligkeit: 0,5dB	408
Allgemeingültige Berechnungsformeln für aktive Tscheby- scheff- Hoch- und Tiefpaßfilter (3dB bei f_)	
Welligkeit: 0,5dB	409
Aktive Tschebyscheff-Tiefpaßfilter der Ordnung $n = 2$ bis $n = 6$ (3dB bei $w_n = 1$)	
Welligkeit: 3dB	411

Allgemeingültige Berechnungsformeln für aktive Tscheby- scheff-Hoch und Tiefpaßfilter (3dB bei f)	
Welligkeit: 3dB	412
Koeffizienten-Tabellen von Übertragungsfunktionen w(p) der aufgezeigten drei Filter-Typen Butterworth- Bessel- und Tschebvscheff	414
Frequenzweichen mit passiven- und aktiven Butterworth- und Besselfunktionen	418
Passive Butterworth-Filter-Frequenzweiche der Ordnung n = 1 mit einem Dämpfungsverlauf von 6dB/Oktave	418
passive Butterworth-Filter-Frequenzweiche der Ordnung n = 2 mit einem Dämpfungsverlauf von 12dB/Oktave	423
Passive Bessel-Filter-Frequenzweiche der Ordnung n = 2 mit einem Dämpfungsverlauf von 6,14 dB/Oktave	426
Dreiwege-Frequenzweiche mit passiven Filtern für einen Dämpfungsverlauf von 12dB/Oktave (Butterworth n = 2)	428
Aktive Filter-Frequenzweichen mit Butterworth- Chrakteristik	434
Aktive Butterworth-Filter-Frequenzweiche der Ordnung n = 2 (12dB/Oktave)	434
Aktive Dreiwege-Frequenzweiche der Ordnung n = 2 Butterworth 12dB/Oktave	436
Phasenkompensation einer aktiven Zweiwege-Frequenzweiche	439
Dreiteiliger verjüngter RC-Phasenschieber-Osszillator	449
Wien- Brückenosszillator	459
Gedanken zur Erfassung von impulsähnlichen Signalen, deren analoge Meßwerte in digitale Information umgesetzt wird	465
Integration einer Eingangsspannung U _E (t) mit niedrigem Verstärkungsgrad	474
Differentiation einer Eingangsspannung U _E (t) mit niedrigem	4 7 7
Gundadelturg eines inventionender Onla	
Venenschaulichung den Biekkonnlung (Cogenkonnlung)	401
Astanschantichung der vackwobbing (Gegeuwobbing)	484
Einfachere Methode der Integration sowie der Differentiation einer Eingangsspannung $U_{E}(t)$ unter Verwendung eines Op	488
Der nichtinvertierende Op	490
Op als Differenzverstärker	492
OP als Subtrahierer	496
Filter der Ordnung n = 2 als Konfigurationsbaustein für	
alle Filterarten höherer Ordnung	498

Allpaßfilter	505
Tabelle für Allpaßkoeffizienten mit maximal	
flacher Gruppenlaufzeit	509
Veranschaulichung der normierten Gruppenlaufzeit T _{GrO}	510
Aktives Allpaßfilter der Ordnung n = 1	512
Aktives Allpaßfilter der Ordnung n = 2	513
Aktives Allpaßfilter der Ordnung n = 3	515
Auszüge aus der Netzwerksynthese für passive Netzwerke	517
Beaktanzzweipol und daraus resultierende Partialbruch- schaltungen nach der 1. und 2. Foster- Form	517
Realisierung einer Reaktanzfunktion Z _{IC} in das physi-	
kalische Netzwerk nach der 1. Foster-Form	522
Realisierung der dazugehörigen Suszeptanzfunktion Y _{IC}	
nach der 2. Foster- Form	524
Allgemeiner Verlauf einer Reaktanzfunktion über w	525
Realisierung der RC- Impedanz- Und RC- Admittanz- Funk-	5.00
tino hach der 1. und 2. Foster- form	526
Beispiele für beide $z_{RC}(p)$ und $I_{RC}(p)$ kealisierungen	529
(Suszeptanz-)- Funktion mach der 1. und 2. Foster- Form	532
Beispiele für beide $Z_{RL}(p)$ und $Y_{RL}(p)$ Realisierungen	535
Allgemeiner Verlauf der Impedanz- und Admittanz- Funk-	E70
Papierianung den verhen gezeigten Funktionen nach Geven	220
(Kettenbruchschaltungen)	539
Reaktanzfunktionen Z _{TC} (p) 1. und 2. Cauer- Form	540
Realisierung einer Z _{TC} Reaktanzfunktion in ein physi-	
kalisches Netzwerk nach der 1. Cauer- Form	543
Netzwerksynthese unter Mithilfe der allgemeinen Leistungs-	
worth - Tiefpaßfilter der Ordnung $n = 3$)	546
Realisierung einer Z _{TC} Reaktanzfunktion in ein physi-	
kalisches Netzwerk nach der 2. Cauer- Form	552
Realisierung der RC- und RL- Impedanz- und Admittanz- Funk- tionen $Z_{pq}(p)$ ($Y_{pq}(p)$) und $Z_{pq}(p)$ ($Y_{pq}(p)$) nach der	
1. und 2. Cauer- Form	555
Realisierung der RC- Impedanz- und RC-Admittanz- Funktion	
in ein physikalisches Netzwerk nach der 1. und 2. Cauer- Form	558
Z _{RCL} - Impedanzfunktion	562
Netzwerk- Synthese nach dem Brune-Verfahren	567
Minimum- Impedanzfunktion	567
Minimum- Suszeptanzfunktion	574
Duale Netzwerke	581

- -

Anwendung der höheren Ableitungen von Laplace- Trans- formierten	58 <u>5</u>
Transformation einer komplizierten Zeitfunktion f(t) in den Bildbereich F(p)	58 <u>5</u>
Netzwerke mit steuerbaren Elementen C(t) und R(t)	587
Netzwerk mit steuerbarem Kondensator C(t)	590
RCL - Netzwerk mit steuerbarem Widerstand R(t)	592
Reihenschaltung von RCL mit gesteuertem Widerstand R(t)	594
LC- Schwingkreis mit gesteuerter Kapazität C(t). Die Lösung ist vorgenommen, durch Reihenentwicklung	597
Reihenschaltung von RCL mit gesteuertem Widerstand R(t). Lösung durch Reihenentwicklung	6 <u>0</u> 2

•