Contents

Critical phenomena, quantum field theory, random walks and random surfaces: Some perspectives Part I

1.	Gen	eral introduction	3		
	1.1	Phenomenology of phase transitions			
		and critical phenomena	3		
	1.2	Multicritical points	11		
	1.3	Spin systems, quantum field theory and random walks:			
		An overview	16		
	1.4	Classical lattice spin systems	17		
	1.5	Relativistic quantum field theory and Euclidean field theory	21		
	1.6	Some random-walk models	32		
2.	Phase transitions and critical points in classical spin systems:				
	A bi	ief survey	37		
	2.1	Existence of phase transitions	37		
	2.2	Existence of critical points	47		
	2.3	Critical exponents in some exactly solvable models			
		and standard approximations	47		
	2.4	Bounds on critical exponents	51		
3.	Scale transformations and scaling (continuum) limits				
	in la	ttice spin systems	53		
4.	Con	Construction of scaling limits: the renormalization group			
	4.1	Block spin transformations	59		
	4.2	Fixed points of block spin transformations,			
		stable and unstable manifolds, critical exponents	61		
	4.3	A brief sketch of the tree expansion	68		
	4.4	Rigorous uses of block spin transformations	76		
5.	Random walks as Euclidean field theory (EFT)				
	5.1	Definition of the model and statement of results	79		
	5.2	Heuristic renormalization-group argument	81		
	5.3	Proof of lower bound	85		

	5.4	Proof	of upper bound	89	
		5.4.1	Expected number of intersections	90	
		5.4.2	Rigorous renormilization-group argument	91	
		5.4.3	Direct inclusion-exclusion argument	94	
_					
6.	EFT	as a ga	is of random walks with hard-core interactions	101	
	6.1	The S	ymanzik-BFS random-walk representation	101	
	6.2	Conse	equences for triviality	100	
	0.3	Conse	equences for nontriviality	112	
7.	Rand	lom-sui	rface models	117	
	7.1	Conti	nuum random-surface actions	118	
	72	Rando	om-surface models in \mathbb{Z}^d	121	
		721	Basic definitions	121	
		722	A mean-field theory for random-surface models	124	
		723	The planar random-surface model	128	
	73	Typic	al phenomena in random-surface theory	132	
	7.4	Bando	omly triangulated random-surface models	135	
	•••	741	Definition of the model	135	
		742	Properties of the model	138	
	7.5	Rando	om-matrix models	142	
	1.0	751	Matrix field theories	142	
		759	Random-matrix models and random triangulations:	110	
		1.0.2	Pure gravity	148	
		753	Random-matrix models for gravity coupled	140	
		1.0.0	to matter fields: Potts spins	151	
		7.5.4	Random-matrix models for gravity coupled	101	
			to matter fields: Polyakov string	153	
	7.6	The t	opological expansion: Non-perturbative results		
		for the	e pure gravity case	155	
		7.6.1	Simple vs. double scaling limit	155	
		7.6.2	The mathematical toolbox	157	
		7.6.3	The simple scaling limit	163	
		7.6.4	The double scaling limit	165	
		7.6.5	Other approaches to the double scaling limit	170	
		7.6.6	Perturbation of the string equation and KdV flow	174	
		7.6.7	Epilogue	176	
Part II		Random-walk models and random-walk representations			
		OF CIUS	satar ravite spin systems		
8.	Intro	duction	n	181	
9.	Rand	lom-wa	lk models in the absence of magnetic field	189	
	9.1	Gener	al definitions	189	

Contents

XI

	9.2	Examples	192
		9.2.1 Polymer-chain models	192
		9.2.2 BFS representation for continuous spin systems	195
		9.2.3 The ARW representation for the Ising model	201
10.	Rand	om-walk models in the presence of a magnetic field	205
	10.1	General definitions	205
	10.2	Examples	207
		10.2.1 Polymer-chain models	207
		10.2.2 Baby polymer-chain models	208
		10.2.3 BFS random-walk models	208
		10.2.4 ARW model	210
11	. Facto	rization and differentiation of the weights	213
	11.1	Inequalities involving the partition of a family of walks	213
		11.1.1 Repulsiveness (or repulsiveness "on the average")	213
		11.1.2 Attractiveness (or noninteraction)	
		between nonoverlapping (or compatible) walks	218
	11.2	Inequalities involving the splitting of a walk	220
	11.3	Differentiation of the weights with respect to J or h	223
		11.3.1 Differentiation with respect to J	223
		11.3.2 Differentiation with respect to h	226
12	. Corr	elation inequalities: A survey of results	229
	12.1	Gaussian upper bounds	230
	12.2	Truncated four-point function in zero magnetic field:	
		Lebowitz and Aizenman-Fröhlich inequalities	231
		12.2.1 Upper bound (Lebowitz inequality)	231
		12.2.2 Nontrivial lower bounds	
		(Aizenman-Fröhlich inequalities)	232
		12.2.3 Once-improved Aizenman-Fröhlich inequality	202
		(Aizenman-Graham inequality)	236
		12.2.4 Twice-improved Aizenman-Fröhlich inequality	200
	123	Inequalities involving infinitely many orders	240
	12.0	in the expansion parameter (non-Gaussian upper bounds)	9 ∕11
		12.3.1 General setup for the dilution trick	241
		12.3.2 Upper bound on the truncated four point function	242
		for the intersection properties	
		of ordinary random unlike (IDODW model)	94C
		12.2.2. Upper bound on the trup stad four point fur stion	240
		12.3.3 Opper bound on the truncated four-point function	040
			249
		12.3.4 Upper bound on the truncated four-point function	
	10.4	Ior the AKW (Ising) model	252
	12.4	I ne kernel $K(x, y)$ and the truncated two-point function	
		in nonzero magnetic field	253
		12.4.1 The kernel $K(x, y)$ and the magnetization $\dots \dots \dots$	253

	12.4.2 The kernel $K(x, y)$ and the two-point function	254
	12.4.3 Monotonicity of $K(x, y)$ in h ,	
	and another upper bound on K	254
	12.4.4 The kernel $K(x, y)$ and the truncated two-point	
	function [lower bound on $K(x, y)$]	254
	12.4.5 Non-trivial upper bound on $K(x, y)$	257
	12.4.6 Once-improved upper bound on $K(x, y)$	258
12.5	Truncated three-point function	260
12.6	Truncated Green functions of higher order	263
12.7	Relationship between the truncated Green functions,	
	the truncated kernels and the truncated weights	265
	12.7.1 Algebraic definition of truncation	265
	12 7.2 Relation between truncation in different algebras	267
	12 7.3 Relations between the truncation	
	for Green functions, kernels and weights	268

Part III Consequences for critical phenomena and quantum field theory

13. Back	ground material	275	
13.1	Models to be considered	275	
13.2	Critical exponents	278	
13. 3	Summary of correlation inequalities	283	
13.4	Reflection positivity, spectral representations		
	and infrared bounds	288	
14. Ineq	ualities for critical exponents	297	
14.1	Symmetric regime	299	
	14.1.1 Upper bound on the bubble diagram		
	(critical exponent b)	299	
	14.1.2 Lower bound on the bubble diagram		
	(critical exponent b)	303	
	14.1.3 Upper bound on the specific heat		
	(critical exponent α)	3 04	
	14.1.4 Bounds on the susceptibility		
	(critical exponent γ)	304	
	14.1.5 Upper bounds on the renormalized coupling		
	constant (critical exponent Δ_4)	306	
	14.1.6 Non-Gaussian lower bound on the renormalized		
	coupling constant (critical exponent Δ_4)	309	
14.2	Extrapolation principles	310	
	14.2.1 Review of Landau-Ginzburg theory	311	
	14.2.2 Consequences of the GHS inequality	320	
	14.2.3 Consequences of the ABF inequality	328	
14.3	.3 Non-symmetric regime: Standard approaches		
	to the critical point	335	

	14.3.1 Upper bound on the truncated bubble diagram	
	(critical exponents b' and b_c)	337
	14.3.2 Lower bound on the truncated bubble diagram	
	(critical exponents b' and b_c)	338
	14.3.3 Upper bound on the specific heat	
	(critical exponents α' and α_c)	338
	14.3.4 Bounds on the suspectibility (critical exponent γ') .	339
	14.3.5 Other hyperscaling inequalities	340
14.4	Non-symmetric regime: Bounds in a full neighborhood	
	of the critical point	341
	14.4.1 Lower bounds on the magnetization	341
	14.4.2 Upper bounds on the magnetization	346
14.5	Horns and all that	351
	14.5.1 The fundamental quantities	351
	14.5.2 Horns and the susceptibility	352
14.6	General considerations on extrapolation principles	354
	14.6.1 Extrapolation principles	
	for a single ordinary differential equation	355
	14.6.2 Conservation laws. Characteristics	357
	14.6.3 Sub- and supra-conservation laws.	
	Extrapolation principles and comparison theorems \ldots	359
15. Cont	inuum Limits	367
15.1	Generalities on continuum limits	367
	15.1.1 What is a continuum limit? What is triviality?	367
	15.1.2 Precise mathematical formulation I:	
	The continuum limit	371
	15.1.3 Precise mathematical formulation II:	
	Necessary conditions	
	for non-boring limit	375
	15.1.4 Precise mathematical formulation III:	
	Convergence of summed quantities	380
	15.1.5 Some criteria for triviality	385
	15.1.6 Summary of what is known	387
15.2	Triviality of $\omega^4(d \ge 4)$ in the symmetric phase	390
15.3	Non-symmetric regime for $d > 4$	399
10.0	15.3.1 Cases of non-existence of broken-symmetry phase	399
	15.3.2 Partial results on triviality	401
Reference	es	405
Index .		431