Contents

	PrefaceX List of ContributorsX List of Abbreviations and Chemical SymbolsX	
1	Structural NMR Studies: from One to Multidimensional Frequency Spectra	1
1.1	Introduction	1
1.1.1	The Fourier Transform (FT) Revolution	2
1.1.2	Mono-dimensional FT-NMR	3
1.2	From 1D to 2D NMR: Scalar Correlation Spectroscopy	5
1.2.1	Sampling Frequency and Sensitivity	7
1.2.2	Lineshape and Frequency Discrimination	9
1.2.3	F ₁ Quadrature Detection and Absorption Mode	12
1.3	Correlation in 2D Spectra	15
1.3.1	Quantum Mechanical Description	17
1.3.2	Product Operators	19
1.3.2.1	Product Operators Algebra	21
1.4	The COSY Experiment	23
1.4.1	Longitudinal Relaxation Effects	25
1.5	The Rationale of 2D NMR Strategy	
1.5.1	Size, Shape and Constituents of Biopolymers and NMR	
	Structural Perspectives	27
1.5.2	Appendix	28
1.5.2.1	Similarity Theorem	
1.5.2.2	Shift Theorem	28
1.5.2.3	Convolution Theorem	29
1.5.2.4	Power Theorem	29

2	Frontiers in NMR of Paramagnetic Molecules: ¹ H NOE and Related Experiments	l 31
2.1	Introduction	
2.2	The Theory of NOE	32
2.3	Examples of ¹ H NOE's in Paramagnetic Molecules	40
2.4 2.4.1 2.4.2	Non-scalar Magnetization Transfer in 2D Experiments NOESY and EXSY Experiments Perspectives in Paramagnetic Systems	46 46 51
2.5	Appendix	55
3	3D NMR Spectroscopy in High Resolution NMR	61
3.1	Introduction	61
3.2	Limits of 2D spectroscopy	62
3.3	Construction scheme of 3D experiments	65
3.4	Classification of peaks in 3D spectra	67
3.5	Information Content of 3D spectra	68
3.6	Sensitivity of 3D spectra	69
3.7 3.7.1 3.7.2	Practical Aspect of 3D Spectroscopy a) Non-selective Approach b) Selective Approach	71 72 74
3.8 3.8.1	Extraction of Information Sequential assignment	76 77
3.9 3.9.1 3.9.2	Quantitative Analysis a) Cross-relaxation rates b) J-coupling constants	83 84 84
3.10	Conclusion	
4	Solution Structure Refinement using Complete Relaxation Matrix Analysis of 2D NOE Experiments: DNA Fragments.	87
4.1	Introduction	
4.2 4.2.1 4.2.2	Distance Information from 2D NOE Experiments Isolated Spin Pair Approximation (ISPA) Complete Relaxation Matrix Analysis (CORMA)	91 93 98

4.2.2.1	Direct Calculation of Distances (DIRECT).	103
4.2.2.2	Structural Refinement using COMATOSE.	106
5	NMR Studies of Proteins, Nucleic Acids and their	112
		113
5.1	Introduction	113
5.2	Biomolecular Structures from NMR	114
5.2.1	¹ H resonance assignments	115
5.2.2	Distance and Dihedral Angle Constraints	117
5.2.3	Structure Calculations Based on Geometric Constraints	
	(Distance-geometry, Distance Bounds Driven Dynamics)	118
5.2.4	Structure Refinement Including Energy Terms (Restrained	100
	Energy Minimization and Molecular Dynamics)	120
5.3	Iterative Relaxation Matrix Approach (IRMA)	122
5.3.1	Theory	123
5.3.2	The IRMA Cycle	125
5.4	Protein-DNA Interaction	128
5.4.1	Lac repressor headpiece structure	128
5.4.2	Lac Headpiece-operator Complexes	130
5.4.3	A Structural Model for the Headpiece-Operator Complex	135
6	31P and 1H 2D NMP and NOESY Distance Postspined	
U	Molecular Dynamics Methodologies for Defining Structure	
	and Dynamics of Wild-Type and Mutant Lac Repressor	
	Operators. Sequence-Specific Variations in Double Helical	
	Nucleic Acids.	141
6.1	Introduction	14 1
6.2	Structural Studies of Oligonucleotides by 2D ¹ H NMR	142
6.2.1	Restrained Molecular Mechanics Calculations of Duplex	
	Geometries	146
6.3	³¹ P NMR of Nucleic Acids; Sequence-Specific Variations in	
	Structure	151
6.3.1	¹⁷ O-Labelling methodology for Assigning ³¹ P Signals of	,
	Oligonucleotides	152
6.3.2	PAC 2D ³¹ P/ ¹ H Heteronuclear Correlated Spectra of	
	Oligonucleotides	155

6.3.3	DOC 2D ³¹ P/ ¹ H Heteronuclear Correlated Spectra of	
	Oligonucleotides	159
6.3.4	Variation of ³¹ P Chemical Shifts in Oligonucleotides	163
6.3.5	Sequence-Specific Variation in ³¹ P Chemical Shifts, Calladine	
	Rules	164
6.3.6	³¹ P Chemical Shifts and Calladine Rules	170
6.3.7	Origin of ³¹ P Chemical Shift Variations and Calladine Rules	172
6.3.8	Molecular Mechanics Energy Minimization Calculation of the	
	Sequence-Specific Variation in Deoxyribose Phosphate	
	Backbone Conformation	173
6.3.9	Sequence-Specific Variation of ³¹ P Chemical Shifts and	
	Backbone Torsional Angles	175
6.4	Binding of Lac Operator to Lac Repressor Headpiece Protein	179
6.5	DNAase I: Significance of the Local Variation in Phosphate	
	Ester Geometry?	181
6.6	Conclusions	182
7	NMR Studies of Dynamic Processes and Multiple	
	Conformations in Protein-ligand Complexes	189
7.1	Introduction	189
7.2	Background	190
7.3	Dynamic Processes in Protein-Ligand Complexes	191
7.4	Detection of Multiple Conformations	195
7.4.1	Group A. Complexes with Pyrimethamine Analogues	196
7.4.2	Group B. Complexes with the Substrate Folate	198
7.4.3	Group C. Complexes with Analogues of Trimethoprim and	
	NADP ⁺	201