Contents

Preface

Chapter 1	Kinematics and conservation of mass	1
Motion		3
1.1.1	Body, motion, and material coordinates	3 3
1.1.2	Stretch and rotation	7
Motion of m	ultiphase bodies	9
1.2.1	What are phase interfaces?	9
1.2.2	Three-dimensional interfacial region	10
1.2.3	Dividing surface	10
1.2.4	Dividing surface as model for three-dimensional	
	interfacial region	11
1.2.5	Motion of dividing surface	13
1.2.6	Stretch and rotation within dividing surfaces	21
1.2.7	More about surface velocity	23
1.2.8	Rate of deformation	26
1.2.9	Moving common lines: qualitative description	33
1.2.10	Moving common lines: emission of material surfaces	53
1.2.11	Moving common lines: velocity is multivalued	
	on a rigid solid	5 9
Mass	•	63
1.3.1	Conservation of mass	63
1.3.2	Surface mass density	66
1.3.3	Surface transport theorem	73
1.3.4	Transport theorem for body containing dividing surface	82
1.3.5	Jump mass balance	86
1.3.6	Location of dividing surface	90

1	1.3.7	Transport theorem for body containing intersecting dividing surfaces	90
1	1.3.8	Mass balance at common line	96
	1.3.9	Comment on velocity distribution in neighborhood	70
		of moving common line on rigid solid	100
1	1.3.10	More comments on velocity distribution in neighborhood	100
•	.5.10	of moving common line on rigid solid	107
Fram	e		111
	1.4.1	Changes of frame	111
	1.4.2	Frame indifferent scalars, vectors, and tensors	117
	1.4.3	Equivalent motions	119
	1.4.4	Principle of frame indifference	126
Notati	ion for	chapter 1	129
Chap	iter 2	Foundations for momentum transfer	135
Force			137
2	2.1.1	What are forces?	137
2	2.1.2	Euler's first and second laws	141
2	2.1.3	Body forces and contact forces	144
2	2.1.4	Euler's first law at dividing surfaces	151
2	2.1.5	Surface stress tensor	153
	2.1.6	Jump momentum balance	156
2	2.1.7	$T^{(\sigma)}$ is symmetric tangential tensor	159
2	2.1.8	Surface velocity, surface stress, and surface body force	163
	2.1.9	Euler's first law at common line	165
2	2.1.10	Momentum balance at common line on relatively rigid	
		solid	169
2	2.1.11	Factors influencing measured contact angles	172
	2.1.12	Relationships for measured contact angles	179
2	2.1.13	More comments concerning moving common lines and contact angles or rigid solids and their relation	
		to the disjoining pressure	184
Behav	vior		188
	2.2.1	Behavior of interfaces	188
	2.2.2	Boussinesq surface fluid	190
	2.2.3	Simple surface material	196
	2.2.4	Surface isotropy group	20
	2.2.5	Isotropic simple surface materials	205
	2.2.6	Simple surface solid	207
7	27	Simple surface fluid	200

Contents xi

2.2.8	Fading memory and special cases of simple surface	
•	fluid	211
2.2.9	Simple surface fluid crystals	214
	nodels for interface	215
2.3.1	Concept	215
2.3.2	Local area averages	217
2.3.3	Local area average of the jump mass balance from a structural model	220
2.3.4	Local area average of the jump momentum balance	
	from a structural model	221
2.3.5	A simple structural model	225
2.3.6	Another simple structural model	230
2.3.7	Comparison with previous results	232
Summary		234
2.4.1	Summary of useful equations within bulk phases	234
2.4.2	Summary of useful equations on dividing surfaces	236
2.4.3	Summary of useful equations at common lines	278
Notation for	chapter 2	280
Chapter 3	Applications of the differential balances to momentum transfer	286
	to momentum standies	
Philosophy		287
3.1.1	Structure of problem	287
3.1.2	Approximations	291
In the absen	ce of deformation	293
3.2.1	Classes of problems	293
3.2.2	Displacement of residual oil: a static analysis	296
3.2.3	Spinning drop interfacial tensiometer	317
3.2.4	Meniscal breakoff interfacial tensiometer	326
3.2.5	Pendant drop	341
3.2.6	Sessile drop	351
3.2.7	Static common line, contact angle, and film configuration	359
In the absen	ice of viscous surface forces	374
3.3.1	Coalescence: drainage and stability of thin films	374
3.3.2	Effects of London-van der Waals forces on the thinning	5, 1
J.J.	and rupture of a dimpled liquid film as a small drop	
		385
	or bubble approaches a mino-mino inferrace	
3.3.3	or bubble approaches a fluid-fluid interface Moving common line, contact angle, and	505

Contents

Boussinesq s	urface fluid	446
3.4.1	Knife-edge surface viscometer	446
Generalized	Boussinesq surface fluid	470
	Deep channel surface viscometer	470
Simple surfa	ce fluid	480
3.6.1	Curvilineal surface flows	480
3.6.2	More about deep channel surface viscometer	485
3.6.3	Oscillating deep channel surface viscometer	489
Limiting cas	e	499
3.7.1	When effects of interfacial viscosities dominate	499
3.7.2	Displacement in a capillary	504
3.7.3	Several interfacial viscometers suitable for measuring	
3.7.5	generalized Boussinesq surface fluid behavior	512
Notation for	chapter 3	527
Chapter 4		5 20
	to momentum transfer	530
Integral bala	ances	531
4.1.1	Introduction	531
4.1.2	Integral mass balance	532
4.1.3	Integral momentum balance	534
4.1.4	Integral mechanical energy balance	539
4.1.5	Integral moment of momentum balance	555
4.1.6	Entrapment of residual oil	560
4.1.7	Displacement of residual oil	576
4.1.8	Displacement of residual oil by a stable foam	584
4.1.9	Capillary rise	594
Approximate		610
4.2.1	A few special techniques	610
Variational j	principle	611
4.3.1		611
4.3.2		614
4.3.3		618
Extremum p		624
4.4.1	Extremeum principles for multiphase flows	624
4.4.2		625
4.4.3	The primary stress extremum principle	632

Contents		xiii
4.4.4	Physical interpretation of E	635
4.4.5	Extremum principles for uniform surface tension	636
4.4.6	Extremum principles for more general interfacial	
	stresses	638
4.4.7	An example: blunt knife-edge surface viscometer	651
Notation for	chapter 4	664
Chapter 5	Foundations for simultaneous momentum, energy, and mass transfer	669
Viewpoint		670
5.1.1	Viewpoint in considering multicomponent materials	670
5.1.2	Body, motion, and material coordinates of species A	670
5.1.3	Motion of multicomponent dividing surface	672
5.1.4	More about surface velocity of species A	676
Mass balance		679
5.2.1	Species mass balance	679
5.2.2	Concentrations, velocities, and mass fluxes	686
5.2.3	Location of multicomponent dividing surface	698
Further com	ments on viewpoint	701
5.3.1	Further comments on viewpoint of multicomponent	
	materials	701
Mass		705
5.4.1	Conservation of mass	705
Force		709
5.5.1	Euler's first and second laws	709
5.5.2	Jump momentum balance	709
5.5.3	$T^{(\sigma)}$ is symmetric, tangential tensor	712
Energy		713
5.6.1	Rate of energy transmission	713
5.6.2	Energy balance	713
5.6.3	Radiant and contact energy transmission	715
5.6.4	Jump energy balance	717
Entropy		724
5.7.1	Clausius-Duhem inequality	724
5.7.2	Radiant and contact entropy transmission	726
5.7.3	Jump Clausius-Duhem inequality	728

xiv Contents

	vior as : 5.8.1	restricted by Clausius-Duhem inequalities Behavior of multicomponent materials	736
•	3.0.1	behavior of multicomponent materials	130
;	5.8.2	Bulk behavior: implications of Clausius-Duhem inequality	736
;	5.8.3	Bulk behavior: implications of caloric equation of state	743
:	5.8.4	Bulk behavior: more on implications of Clausius- Duhem inequality	749
	5.8.5	Surface behavior: implications of jump Clausius- Duhem inequality	755
	5.8.6	Surface behavior: implications of surface caloric equation of state	762
;	5.8.7	Surface behavior: adsorption isotherms and equations of state	702
	5.8.8	Surface behavior: more on implications of jump Clausius-Duhem inequality	793
	5.8.9	Alternative forms for the energy balances and the Clausius-Duhem inequalities	799
		Ciausius-Dunein mequanties	177
Beha	vior as	restricted by frame indifference	810
	5.9.1	Other principles to be considered	810
•	5.9.2	Alternative independent variables in constitutive equations	810
	5.9.3	Bulk behavior: constitutive equations for stress tensor	813
	5.9.4	Bulk behavior: constitutive equations for energy flux vector	814
	5.9.5	Bulk behavior: constitute equations for mass flux vector	816
	5.9.6	Surface behavior: constitutive equations for surface stress tensor	818
	5.9.7	Surface behavior: constitutive equations for surface energy flux vector	819
	5.9.8	Surface behavior: constitutive equations for surface mass flux vector	821
Intri	nsically	stable equilibrium	826
	5.10.1	Stable equilibrium	826
	5.10.2	Constraints on isolated systems	828
	5.10.3	Implications of (2-36) for intrinsically stable equilibrium	839
;	5.10.4	Implications of (2-37) for intrinsically stable equilibrium	847
:	5.10.5	Limiting criteria for intrinsically stable equilibrium	857
	5.10.6	Equilibrium conditions for nucleation	873
Sumn	nary		888
	5.11.1	Summary of useful equations	888

Contents xv

Notation for	chapter 5	908
Chapter 6	Applications of the differential balances to energy and mass transfer	918
Philosophy 6.1.1 6.1.2	Structure of problems involving energy transfer Structure of problems involving mass transfer	919 919 92 0
Complete so 6.2.1	lutions There are no complete solutions	923 923
Limiting cas 6.3.1	es of energy transfer Motion of a drop or bubble	924 924
Limiting cas 6.4.1 6.4.2 6.4.3	es of mass trasnfer Motion of a drop or bubble Longitudinal and transverse waves Stochastic interfacial disturbances created by thermal	932 932 940
Notation for	noise and the importance of the interfacial viscosities	972 1023
		1020
Chapter 7	Applications of integral averaging to energy and mass trasnfer	1026
7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Introduction The integral mass balance for species A The integral energy balance The integral Clausius-Duhem inequality Stability of static interfaces in a sinusoidal capillary	1027 1027 1027 1028 1037 1040
Notation for	chapter 7	1053
Appendix A	A Differential geometry	1057
Physical spa A.1.1 A.1.2 A.1.3	Euclidean space Notation in (E ³ , V ³)	1059 1059 1060 1065

xvi Contents

Vector fields		1067
A.2.1	Natural basis	1067
A.2.2	Surface gradient of scalar field	1075
A.2.3		1076
A.2.4	Covariant and contravariant components	1077
A.2.5		1079
A.2.6	Tangential and normal components	1080
Second-orde	r tensor fields	1083
A.3.1	Tangential transformations and surface tensors	1083
A.3.2	Projection tensor	1085
A.3.3	Tangential cross tensor	1087
A.3.4	Transpose	1092
A.3.5	Inverse	1093
A.3.6	Orthogonal tangential transformation	1095
A.3.7		1098
A.3.8	Polar decomposition	1102
Third-order tensor fields		1105
A.4.1	Surface tensors	1105
Surface grad	lient	1107
A.5.1	Spatial vector field	1107
A.5.2		1108
A.5.3		1110
A.5.4		1126
A.5.5	Tensor field is explicit function of position in space	1127
A.5.6	Tensor field is explicit function of position on surface	1129
Integration		1135
A.6.1	Line integration	1135
A.6.2	Surface integration	1137
A.6.3	Surface divergence theorem	1138
Name Index		1143
Subject Index		1152