Contents

1		roduction			
2	Radar Systems				
	2.1	•	5 5		
	2.2		6		
	2.3	1 5	8		
			8		
			9		
			9		
	2.4	Angle Detection 1	1		
	2.5	Frequency Regulations 12	2		
	2.6	Receiver Architectures 14	4		
		2.6.1 Homodyne 14	4		
		2.6.2 Heterodyne 1	5		
	2.7	Status of Automotive Radar Systems 10	6		
	2.8	Technology Requirements for Radar Chipset 1	7		
	Refe	erences 1	7		
3	CM	OS and Bipolar Technologies 19	9		
	3.1	CMOS Technology 19	9		
		3.1.1 MOSFET Layout and Modeling Considerations 20	0		
		3.1.2 Devices Available in C11N 22	2		
	3.2	Bipolar Transistors 22	3		
		3.2.1 HBT Layout and Modeling Considerations 24	4		
		3.2.2 Devices Available in B7HF200 2:	-		
	3.3	Technology Comparison 24	6		
		3.3.1 Transistor Performance 24	6		
		3.3.2 Metallization and Passive Components 24	9		
	Refe	erences	1		

4	Modeling Techniques					
	4.1					
		4.1.1		36		
		4.1.2		38		
		4.1.3		40		
	4.2	Transi		42		
	Refe	rences		45		
5	Мол	curomo	nt Techniques	47		
5.1 S-parameter De-embedding Techniques						
	5.1	5.1.1	Extension of Thru Technique for De-embedding of	48		
		5.1.1		49		
			•	+9 49		
			-	79 52		
		5.1.2	De-embedding of Differential Devices using	12		
		J.1.2		54		
			-	54 54		
				54 50		
	5.2	Diffor		50 53		
	5.2	5.2.1	6	55 54		
		3.2.1		54 55		
				55 57		
				57 58		
		500	0	50 59		
	Dafa	5.2.2		59 74		
	Rele	rences.		4		
6	Rad			77		
	6.1	Low-N	oise Amplifiers	78		
		6.1.1		78		
		6.1.2	- 07	33		
		6.1.3	Measurements of CMOS and SiGe LNAs 8	36		
		6.1.4	LNA Results Summary and Comparison	91		
	6.2	Mixers	ç) 2		
		6.2.1) 3		
			6.2.1.1 Active Mixer in CMOS Technology 9) 3		
			6.2.1.2 Active Mixer in SiGe Technology) 5		
			6.2.1.3 Measurements of CMOS and SiGe Active Mixers.	97		
			6.2.1.4 Active Mixers Results Summary and Comparison . 10)(
		6.2.2	Passive Mixers)2		
			6.2.2.1 Passive Resistive Ring Mixer in CMOS			
			Technology 10			
			6.2.2.2 Passive Bipolar Mixer in SiGe Technology 10)5		
			6.2.2.3 Measurements of CMOS and SiGe Passive Mixers 10)7		
			6.2.2.4 Passive Mixers Results Summary and Comparison 11			
		6.2.3	Comparison of Active and Passive Mixers	11		

7

6.3	Single-Channel Receivers 1				
	6.3.1	Design o	of Active and Passive Receivers in CMOS	113	
	6.3.2		r Measurements and Analysis		
		6.3.2.1	Chip Size		
		6.3.2.2	Power Consumption, Gain and Noise Figure		
		6.3.2.3	Linearity		
		6.3.2.4	Required LO Power		
		6.3.2.5	Isolation	119	
		6.3.2.6	Temperature Performance	120	
	6.3.3	Receive	r Results Summary and Comparison	121	
6.4	IQ Re		-		
	6.4.1	Design of	of IQ Receivers	122	
		6.4.1.1	IQ Receiver in CMOS Technology	122	
		6.4.1.2	IQ Receiver in SiGe Technology	124	
	6.4.2		iver Measurements		
	6.4.3	IQ Rece	iver Results Summary and Comparison	131	
6.5	Integr		ve Circuits		
	6.5.1	Circuit I	Design and Layout Considerations		
		6.5.1.1	On-Chip 180° Power Splitter/Combiner		
		6.5.1.2	On-Chip 90° Power Splitter/Combiner		
		6.5.1.3	On-Chip 180° Hybrid Ring Coupler	136	
	6.5.2	Realizat	ion and Measurement Results		
		6.5.2.1	On-Chip 180° Power Splitter/Combiner		
		6.5.2.2	On-Chip 90° Power Splitter/Combiner	138	
		6.5.2.3	On-Chip 180° Hybrid Ring Coupler	140	
	6.5.3	Results !	Summary and Discussion	143	
6.6	Circuit-Level RF ESD Protection 14				
	6.6.1		w of Circuit-Level Protection Techniques		
	6.6.2	Virtual (Ground Concept		
		6.6.2.1	Concept Verification by Circuit Simulation		
		6.6.2.2	Concept Verification by HBM Measurement		
		6.6.2.3	Concept Verification by TLP Measurement		
	6.6.3	Transfor	mer Protection Concept		
		6.6.3.1	Test LNA Circuit Design	155	
		6.6.3.2	Test LNA Realization and Measurement	156	
		6.6.3.3			
Refe	erences			158	
			~		
			Circuits		
7.1	-		in CMOS		
	7.1.1		sceiver Circuit Design		
	7.1.2		ments of Transceiver		
	7.1.3		Summary and Comparison		
7.2	•		Amplifier-Mixer Transceiver		
	7.2.1	System (Considerations	173	

		7.2.2	Power-Amplifier-Mixer Circuit Design			174
		7.2.3	PAMIX Measurements			176
		7.2.4	Results Summary and Comparison			179
	Refe	rences			• • • •	180
8	Conclusions and Outlook					
A	LFN	1CW Ra	dar			185
	Refe	rences		••••	• • • •	188
в	FSC	W Rada	r			189
С	C .1	Surface	rge Method Charge Method Theory g of the Multifinger Layout			191
D	Mea	suremen	t of Active Circuits			197
D.1 Measurement Techniques						197
	D.2		naracterization			
		D.2.1	S-parameter Measurement			200
		D.2.2	Noise Figure Measurement			200
		D.2.3	Linearity Measurement		• • • • •	202
	D.3	Mixer a	nd Receiver Characterization		••••	203
		D.3.1	Conversion Gain Measurement		 .	203
		D.3.2	Noise Figure Measurement		••••	203
		D.3.3	Linearity Measurement	••••	••••	204
	Refe	rences		• • • •	••••	205
Ind	ex				••••	207