Inhaltsverzeichnis

E :	infüh	rung		1				
1	Einige Grundlagen der Festkörpermechanik							
	1.1		ung	ţ				
		1.1.1	Spannungsvektor					
		1.1.2	Spannungstensor					
		1.1.3	Gleichgewichtsbedingungen					
	1.2	Deform	mation und Verzerrung					
		1.2.1	Verzerrungstensor					
		1.2.2	Verzerrungsgeschwindigkeit	14				
	1.3	Stoffge	esetze					
		1.3.1	Elastizität					
		1.3.2	Viskoelastizität					
		1.3.3	Plastizität					
	1.4	Energi	ieprinzipien					
		1.4.1	Energiesatz					
		1.4.2	Prinzip der virtuellen Arbeit					
		1.4.3	Satz von Clapeyron, Satz von Betti	31				
	1.5	Ebene	Probleme					
		1.5.1	Allgemeines					
		1.5.2	Lineare Elastizität, Komplexe Methode					
		1.5.3	Idealplastisches Material, Gleitlinienfelder	. 35				
	1.6	Litera	tur	. 38				
2	Kla		e Bruch- und Versagenshypothesen	41				
	2.1		lbegriffe					
	2.2	Versag	genshypothesen					
		2.2.1	Hauptspannungshypothese					
		2.2.2	Hauptdehnungshypothese					
		2.2.3	Formänderungsenergiehypothese					
		2.2.4	Coulomb-Mohr Hypothese	. 43				
		2.2.5	Drucker-Prager-Hypothese					
	2.3	Deform	mationsverhalten beim Versagen	. 49				
	2.4		${f gsaufgaben}$					
	2.5		tur					

3			und Erscheinungsformen des Bruchs	53		
	3.1		skopische Aspekte	53		
		3.1.1	Oberflächenenergie, Theoretische Festigkeit	53		
		3.1.2	Mikrostruktur und Defekte	55		
		3.1.3	Rissbildung	58		
		3.1.4	Perkolation	60		
	3.2	Makro	skopische Aspekte	61		
		3.2.1	Rissausbreitung	61		
		3.2.2	Brucharten	62		
	3.3	Litera	tur	64		
4	Line		ruchmechanik	65		
	4.1		neines	65		
	4.2	Das R	issspitzenfeld	66		
		4.2.1	Zweidimensionale Rissspitzenfelder	66		
		4.2.2	Modus I Rissspitzenfeld	72		
		4.2.3	Dreidimensionales Rissspitzenfeld	74		
	4.3	K-Ko	nzept	74		
	4.4	K-Fak	storen	76		
		4.4.1	Beispiele	76		
		4.4.2	Integralgleichungsformulierung	83		
		4.4.3	Methode der Gewichtsfunktionen	85		
		4.4.4	Risswechselwirkung	88		
		4.4.5	Spannungsintensitätsfaktoren und Kerbfaktoren	93		
	4.5	Die Br	ruchzähigkeit K_{Ic}	95		
	4.6		iebilanz	97		
		4.6.1	Energiefreisetzung beim Rissfortschritt	97		
		4.6.2	Energiefreisetzungsrate	99		
		4.6.3	Nachgiebigkeit, Energiefreisetzungsrate und K-Faktoren .	102		
		4.6.4	Energiesatz, Griffithsches Bruchkriterium	104		
		4.6.5	J-Integral	110		
	4.7	Kleinh	ereichsfließen	117		
		4.7.1	Größe der plastischen Zone, Irwinsche Risslängenkorrektur	117		
		4.7.2	Qualitative Bemerkungen zur plastischen Zone	119		
	4.8		es Risswachstum	121		
	4.9		chte Beanspruchung	124		
			itiierung an Löchern und Kerben	129		
		Ermüdungsrisswachstum				
	112	Piezoo	lektrische Materialien	133 141		
	4.10		Grundlagen	141		
			Der Riss im ferroelektrischen Material	143		
	1 11		saufgaben			
	せいエオ	Chang	DUULEUDUL	170		

	4.15	Literatur	148			
5	Elastisch-plastische Bruchmechanik 151					
_	5.1	Allgemeines	151			
	5.2	Dugdale Modell	152			
	5.3	Kohäsivzonenmodelle	156			
	5.4	Rissspitzenfeld	160			
	0.1	5.4.1 Idealplastisches Material	160			
		5.4.2 Deformationstheorie, HRR-Feld	166			
	5.5	Bruchkriterium	172			
	5.6	Bestimmung von J	174			
	5.7	Bestimmung von J_c	175			
	5.8	Risswachstum	179			
	0.0	5.8.1 J -kontrolliertes Risswachstum	179			
		5.8.2 Stabiles Risswachstum	181			
		5.8.3 Stationäres Risswachstum	183			
	5.9	Konzept der wesentlichen Brucharbeit	190			
	0.0	Übungsaufgaben	192			
		Literatur	193			
			195			
6		riechbruchmechanik				
	6.1	Allgemeines	195			
	6.2	Bruch von linear viskoelastischen Materialien	196			
		6.2.1 Rissspitzenfeld, elastisch-viskoelastische Analogie	196			
		6.2.2 Bruchkonzept	199			
		6.2.3 Risswachstum	200			
	6.3	Kriechbruch von nichtlinearen Materialien	204			
		6.3.1 Sekundäres Kriechen, Stoffgesetz	204			
		6.3.2 Stationärer Riss, Rissspitzenfeld, Belastungsparameter	206			
		6.3.3 Kriechrisswachstum	210			
	6.4	Literatur	216			
7	Dyn	amische Probleme der Bruchmechanik	217			
	7.1	Allgemeines	217			
	7.2	Einige Grundlagen der Elastodynamik	218			
	7.3	Dynamische Belastung des stationären Risses	220			
		7.3.1 Rissspitzenfeld, K-Konzept	220			
		7.3.2 Energiefreisetzungsrate, energetisches Bruchkonzept	220			
		7.3.3 Beispiele	222			
	7.4	Der laufende Riss				
		7.4.1 Rissspitzenfeld	224			
		7.4.2 Energiefreisetzungsrate	228			

		7.4.3 Bruchkonzept, Rissgeschwindigkeit, Rissverzweigung,					
		Rissarrest	231				
		7.4.4 Beispiele	234				
	7.5	Fragmentierung	238				
	7.6	Literatur	240				
8	Mik	romechanik und Homogenisierung					
	8.1		241				
	8.2		243				
			243				
			252				
	8.3		258				
			259				
		0 , 1 , 0	268				
		8.3.3 Energieprinzipien und Schranken	288				
	8.4		295				
	0.2		296				
		0 71	304				
	8.5	8	310				
	8.6		313				
	8.7	0 - 0	313				
9	Sch		315				
	9.1	8	315				
	9.2	0	316				
	9.3	1	319				
	9.4		322				
			322				
		9 0	324				
		+	327				
	9.5		327				
	9.6	Literatur	331				
10	Prol	babilistische Bruchmechanik	333				
			333				
			334				
		•	337				
	10.0		337				
			339				
			340				
	10 4		341				
			343				
	20.0		J 10				
Sa	chve	rzeichnis	345				