

Contents

Preta	ace	IX
Chap	oter 1 Introduction to Control Systems	1
1–1	Introduction 1	
1–2	Examples of Control Systems 3	
1–3	Closed-Loop Control versus Open-Loop Control 6	
1–4	Outline of the Book 8	
Chap 2-1	oter 2 The Laplace Transform Introduction 9	9
 2–2	·	10
2–3	Laplace Transformation 13	
2–4	Laplace Transform Theorems 23	
2–5	Inverse Laplace Transformation 32	
2–6	Partial-Fraction Expansion with MATLAB 36	
2–7	Solving Linear, Time-Invariant, Differential Equations	40
	Example Problems and Solutions 42	
	Problems 51	

Chap	ter 3 Mathematical Modeling of Dynamic Systems	53
3–1	Introduction 53	
3–2	Transfer Function and Impulse-Response Function 55	
3–3	Automatic Control Systems 58	
3–4	Modeling in State Space 70	
3–5	State-Space Representation of Dynamic Systems 76	
3–6	Transformation of Mathematical Models with MATLAB 83	
3–7	Mechanical Systems 85	
3–8	Electrical and Electronic Systems 90	
3-9	Signal Flow Graphs 104	
3–10	Linearization of Nonlinear Mathematical Models 112	
	Example Problems and Solutions 115	
	Problems 146	
~ 1	4 Mathematical Mathematical Control of	
Chap	ter 4 Mathematical Modeling of Fluid Systems and Thermal Systems	152
		1,72
4–1	Introduction 152	
4–2	Liquid-Level Systems 153	
4–3	Pneumatic Systems 158	
4–4	Hydraulic Systems 175	
4–5	Thermal Systems 188	
	Example Problems and Solutions 192	
	Problems 211	
Chap	ter 5 Transient and Steady-State Response Analyses	219
5–1	Introduction 219	
5–2	First-Order Systems 221	
5–2 5–3	Second-Order Systems 224	
5–4	Higher-Order Systems 239	
5–5	Transient-Response Analysis with MATLAB 243	
5–6	An Example Problem Solved with MATLAB 271	
5–7	Routh's Stability Criterion 275	
5–8	Effects of Integral and Derivative Control Actions on System	
<i>5</i> –0	Performance 281	
5-9	Steady-State Errors in Unity-Feedback Control Systems 288	
	Example Problems and Solutions 294	
	Problems 330	

Chap	oter 6 Root-Locus Analysis	337
6-1	Introduction 337	
6-2	Root-Locus Plots 339	
6–3	Summary of General Rules for Constructing Root Loci 351	
6–4	Root-Locus Plots with MATLAB 358	
6–5	Positive-Feedback Systems 373	
6–6	Conditionally Stable Systems 378	
6–7	Root Loci for Systems with Transport Lag 379	
	Example Problems and Solutions 384	
	Problems 413	
Chap	oter 7 Control Systems Design by the Root-Locus Method	416
7–1	Introduction 416	
7–2	Preliminary Design Considerations 419	
7–3	Lead Compensation 421	
7–4	Lag Compensation 429	
7–5	Lag-Lead Compensation 439	
7–6	Parallel Compensation 451	
	Example Problems and Solutions 456	
	Problems 488	
Chap	eter 8 Frequency-Response Analysis	492
8–1	Introduction 492	
8–2	Bode Diagrams 497	
8–3	Plotting Bode Diagrams with MATLAB 516	
8–4	Polar Plots 523	
8–5	Drawing Nyquist Plots with MATLAB 531	
8–6	Log-Magnitude-versus-Phase Plots 539	
8–7	Nyquist Stability Criterion 540	
8–8	Stability Analysis 550	
8–9	Relative Stability 560	
8–10	Closed-Loop Frequency Response of Unity-Feedback Systems 575	
8–11	Experimental Determination of Transfer Functions 584	
	Example Problems and Solutions 589	
	Problems 612	

Contents

Chapter 9 Control Systems Design by Frequency Response	
9–1 Introduction 618	
9–2 Lead Compensation 621	
9–3 Lag Compensation 630	
9–4 Lag-Lead Compensation 639	
9–5 Concluding Comments 645	
Example Problems and Solutions 648	
Problems 679	
Chapter 10 PID Controls and Two-Degrees-of-Freedom	601
Control Systems	681
10–1 Introduction 681	
10–2 Tuning Rules for PID Controllers 682	
10-3 Computational Approach to Obtain Optimal Sets of Parameter Values 692	
10-4 Modifications of PID Control Schemes 700	
10–5 Two-Degrees-of-Freedom Control 703	
10–6 Zero-Placement Approach to Improve Response Characteristics 705	
Example Problems and Solutions 724	
Problems 745	
Chapter 11 Analysis of Control Systems in State Space	752
11–1 Introduction 752	
11–2 State-Space Representations of Transfer-Function Systems 753	
11–3 Transformation of System Models with MATLAB 760	
11–4 Solving the Time-Invariant State Equation 764	
11–5 Some Useful Results in Vector-Matrix Analysis 772	
11–6 Controllability 779	
11–7 Observability 786	
Example Problems and Solutions 792	
Problems 824	

vi Contents

Chapter 12 Design of Control Systems in State Space	826
12–1 Introduction 826	
12–2 Pole Placement 827	
12–3 Solving Pole-Placement Problems with MATLAB 839	
12–4 Design of Servo Systems 843	
12–5 State Observers 855	
12–6 Design of Regulator Systems with Observers 882	
12–7 Design of Control Systems with Observers 890	
12–8 Quadratic Optimal Regulator Systems 897	
Example Problems and Solutions 910	
Problems 948	
	952
References	
ndex	

Contents