Inhaltsverzeichnis

1	Begr	iffsdefinit	ionen	1								
2	Mate	aterial: Eigenschaften und Klassifizierung										
	2.1	Metalle		7								
		2.1.1	Elektrische Eigenschaften der Metalle	8								
		2.1.2	Metallische Leiter bei hohen Frequenzen	11								
		2.1.3	Thermische Eigenschaften der Metalle	13								
	2.2	Flüssigk	reiten	15								
	2.3	Gase .		16								
	2.4	Halbleit	er	16								
	2.5	Nichtlei	ter (Isolatoren)	17								
	2.6	Zusamm	nenfassung	17								
3	Fest	Festwiderstände										
	3.1	Klassifiz	zierung von Widerständen	19								
	3.2	Eigensc	haften von Witlerständen	20								
		3.2.1	Begriffsdefinitionen	21								
		3.2.2	Reihen- und Parallelschaltung von Widerständen	27								
	3.3	Widerst	andswerte	28								
	3.4	Werteke	ennzeichnung von Widerständen	31								
		3.4.1	Kennzeichnung von Widerständen durch Farbcode	31								
		3.4.2	Kennzeichnung von Widerständen durch Klartext	33								
		3.4.3	Kennzeichnung von SMD-Widerständen	34								
	3.5	Bauforn	nen von Festwiderständen	38								
		3.5.1	Drahtwiderstände	38								
			3.5.1.1 Aufbau und Eigenschaften von Drahtwiderständen	38								
			3.5.1.2 Ausführungen von Drahtwiderständen	39								
			3.5.1.3 Temperaturabhängigkeit des Widerstandswertes	41								
			3.5.1.4 Frequenzabhängigkeit von Drahtwiderständen	42								
		3.5.2	Massewiderstände	44								

DEUTSCHE NATIONAL BIBLIOTHEK VIII Inhaltsverzeichnis

		3.5.3	Kohlesch	nichtwiderstände	45
			3.5.3.1	Einsatzbereiche und allgemeine Daten	45
			3.5.3.2	Allgemeines zur Herstellung	46
			3.5.3.3	Spezielle Herstellverfahren	47
		3.5.4	Metallsc	hichtwiderstände (Metallfilmwiderstände)	48
			3.5.4.1	Metalloxid-Schichtwiderstände	48
			3.5.4.2	Edelmetall-Schichtwiderstände	48
			3.5.4.3	Metallschichtwiderstände mit Metall-Legierungen .	48
			3.5.4.4	Metallglasur-Widerstände	49
		3.5.5	SMD-W	iderstände	50
			3.5.5.1	Aufbauformen von SMD-Widerständen	50
			3.5.5.2	HF-Eigenschaften von SMD-Widerständen	54
			3.5.5.3	Impulsbelastung bei SMD-Widerständen	58
	3.6	Widers	standsnetz	werke	60
		3.6.1	Einsatzb		60
		3.6.2	Ausführ		61
		3.6.3	Eigenscl	haften und Aufbau	62
	3.7	Zusam	menfassur	ng	64
1	Verä	nderhar	e Widerst	ände, Potenziometer	67
	4.1			Viderstand	67
	4.2			s Potenziometers	68
	4.3		-	satz von Potenziometern	72
		4.3.1		pereiche	72
		4.3.2		andselemente	72
			4.3.2.1	Draht als Widerstandselement	72
			4.3.2.2	Widerstandselement in Hybridtechnik	73
			4.3.2.3	Leitender Kunststoff als Widerstandselement	73
		4.3.3	Mechan	ische Drehwinkel	73
			4.3.3.1	Mehrwendelpotenziometer	73
			4.3.3.2	Präzisionspotenziometer mit einer mechanischen	
				Umdrehung (360° Drehwinkel)	74
		4.3.4	Mechan	ische Bauformen	74
			4.3.4.1	Einlochbefestigung	74
			4.3.4.2	Präzisionspotenziometer mit Synchroflansch	
				(Servoflansch- und Kugellager)	75
	4.4	Begrif	fsdefinitio	nen zum Potenziometer	76
		4.4.1	Allgeme	eine Begriffe	76
		4.4.2	Potenzi	ometer-Betätigung	77
		4.4.3	Klimati	sche Prüfklasse	78
		4.4.4	Nennwe	erte und Eigenschaften	79

Inhaltsverzeichnis IX

		4.4.5	Zusammenhang zwischen Widerstandswert	
			und Einstellbewegung	82
		4.4.6	Spannungsverhältnisse	84
		4.4.7	Funktionsverlauf (Widerstandswertverlauf)	85
		4.4:8	Weitere Eigenschaften	87
		4.4.9	Wellenenden, Befestigungsmittel und Anschlüsse	88
		4.4.10	Vorzugswerte für den Gesamtwiderstand	89
		4.4.11	Kennzeichnung der Potenziometer	89
	4.5	Zusamr	nenfassung	89
5	Verän	derliche	e, nichtlineare Widerstände	91
	5.1	NTC-W	/iderstand, Heißleiter	92
		5.1.1	Einsatzbereiche des Heißleiters	92
		5.1.2	Herstellung von Heißleitern, Leitungsmechanismus	94
		5.1.3	Widerstandskennlinie	95
		5.1.4	Temperaturkoeffizient	101
		5.1.5	Spannungs-Stromkennlinie	102
		5.1.6	Zeitkonstante	105
		5.1.7	Datenblattangaben	106
		5.1.8	Wichtiger Hinweis zur Anwendung von NTCs	107
		5.1.9	Anwendung: Temperaturmessung	108
		5.1.10	Anwendung: Linearisierung der NTC-Widerstandskennlinie .	109
		5.1.11	Anwendung: Einschaltstrombegrenzung	110
		5.1.12	Anwendung: Flüssigkeits-Niveaufühler	
		5.1.13	Anwendung: Ansprechverzögerung	
	5.2	PTC-W	iderstand, Kaltleiter	
		5.2.1	Einsatzbereiche des Kaltleiters	
		5.2.2	Herstellung von Kaltleitern, Leitungsmechanismus	114
		5.2.3	Widerstandskennlinie	115
		5.2.4	Temperaturkoeffizient	
		5.2.5	Strom-Spannungs-Kennlinie	117
		5.2.6	Spannungs- und Frequenzabhängigkeit	
			des PTC-Widerstand	
		5.2.7	Anwendung: Temperaturfühler	119
		5.2.8	Anwendung: Flüssigkeits-Niveaufühler	
			und Strömungsmesser	120
		5.2.9	Anwendung: Selbstregelnder Thermostat	
		5.2.10	Anwendung: Überstromsicherung	
	5.3		Viderstand, Varistor	
		5.3.1	Einsatzbereiche des Varistors	
		5.3.2	Herstellung von Varistoren, Leitungsmechanismus	
		5.3.3	Strom-Spannungs-Kennlinie	124

Inhaltsverzeichnis

		5.3.4 Begriffsdefinitionen und Datenblattangaben 127
		5.3.5 Hinweis zur Anwendung von Varistoren 129
		5.3.6 Anwendung: Überspannungsschutz 129
	5.4	LDR-Widerstand, Fotowiderstand
		5.4.1 Einsatzbereiche des Fotowiderstandes
		5.4.2 Herstellung von Fotowiderständen, Leitungsmechanismus 132
		5.4.3 Widerstandskennlinie
		5.4.4 Dynamische Eigenschaften
		5.4.5 Kennwerte, Datenblattangaben
		5.4.6 Anwendung, Prinzipschaltung 140
		5.4.7 Zusammenfassung
6	Dur	ch Dehnung veränderbarer Widerstand
•	6.1	Dehnungsmessstreifen, allgemeines
	6.2	Einsatzbereiche des Dehnungsmessstreifens
	6.3	DMS Aufbau
	0.5	6.3.1 Grundkonstruktion
		6.3.2 Draht-DMS
		6.3.3 Folien-DMS
		6.3.4 Halbleiter-DMS
		6.3.5 Röhrchen-DMS
	6.4	DMS Funktionsprinzip
	6.5	Kenndaten
	6.6	Messverfahren, Brückenschaltungen
	0.0	6.6.1 Viertelbrücke
		6.6.2 Halbbrücke
		6.6.3 Vollbrücke
	6.7	Zusammenfassung ,
		•
7	_	netfeldabhängiger Widerstand
	7.1	Feldplatte
	7.2	Kennlinien
	7.3	Einsatzbereiche der Feldplatte
	7.4	Aufbau, Wirkungsweise
	7.5	Ausführungsformen
	7.6	Permalloy-Sensoren
	7.7	Zusammenfassung
8	Kon	densatoren
	8.1	Wirkungsweise und Eigenschaften von Kondensatoren 17
		8.1.1 Allgemeines
		8.1.2 Kondensator im Gleichstromkreis

Inhaltsverzeichnis XI

	8.1.3	Kondensa	ntor laden und entladen	173						
	8.1.4	Kondensa	ator im Wechselstromkreis	175						
	8.1.5	Reihen- u	and Parallelschaltung von Kondensatoren	176						
8.2	Dielektrische Stoffe									
	8.2.1	Allgemeine Eigenschaften der Dielektrika 177								
	8.2.2	Dielektris	sche Polarisation	178						
		8.2.2.1	Elektronenpolarisation	179						
		8.2.2.2	Ionenpolarisation	179						
		8.2.2.3	Orientierungspolarisation	180						
		8.2.2.4	Frequenzabhängigkeit von ε_r	180						
		8.2.2.5	Temperaturabhängigkeit von ε_r	180						
	8.2.3	Einteilun	g der Dielektrika	181						
		8.2.3.1	Unpolare Stoffe	181						
		8.2.3.2	Polare Stoffe	181						
		8.2.3.3	Ferroelektrika	182						
		8.2.3.4	Piezoelektrische Werkstoffe	183						
		8.2.3.5	Kunststoffe	183						
8.3	Elektris	sche Leitfä	higkeit	185						
	8.3.1	Volumen	leitfähigkeit	186						
	8.3.2	Oberfläch	nenleitfähigkeit	186						
8.4	Dielekt	rischer Du	rchschlag	187						
8.5	Dielekt	rika im ele	ektrischen Wechselfeld	188						
8.6	Speziel	le Eigensc	haften dielektrischer Stoffe	192						
8.7	Allgem	eine Eiger	nschaften des technischen Kondensators	194						
8.8	Wichtig	ge Kenngr	ößen eines Kondensators	198						
8.9	Zusamı	menfassun	g	200						
8.10	Kennze	ichnung v	on Kondensatoren	202						
	8.10.1	Angabe o	der Nennkapazität	202						
	8.10.2	Angabe o	der Toleranz	205						
	8.10.3	Angabe of	der Nennspannung	205						
	8.10.4	Tempera	tur- und Toleranzangaben	206						
	8.10.5	Kennzeid	chnung des Außenbelages	206						
8.11	Bauarte	en und Bai	ıformen von Kondensatoren	206						
	8.11.1	Folienko	ndensatoren (Wickelkondensatoren)	208						
		8.11.1.1	Herstellung von Folienkondensatoren	209						
		8.11.1.2	Aufbau von Folienkondensatoren	210						
		8.11.1.3	Papierkondensator	211						
		8.11.1.4	Metallpapier-Kondensator (MP-Kondensator)	212						
		8.11.1.5	Kunststofffolienkondensator	214						
		8.11.1.6	Eigenschaften der Kunststofffolien, Anwendungs-							
			gebiete der Kondensatoren	216						
		8.11.1.7	KS- und KP-Kondensatoren im Detail	218						

XII Inhaltsverzeichnis

			8.11.1.8	MK-Kondensatoren im Detail	221
			8.11.1.9	Eigenschaften und Anwendungsgebiete von	
				MK-Kondensatoren im Überblick	226
		8.11.2	Elektroly	tkondensator	227
				Allgemeines zu Elektrolykondensatoren	
				Aluminium-Elektrolytkondensatoren	
				Tantal-Folien-Elektrolytkondensatoren	
		8.11.3	Masseko	ndensatoren	242
			8.11.3.1	Keramikkondensatoren	242
			8.11.3.2	Tantal-Sinter-Elektrolytkondensatoren	249
			8.11.3.3	Niob-Elektrolytkondensatoren	251
			8.11.3.4	Glaskondensatoren	252
		8.11.4	Schichtke	ondensatoren	253
			8.11.4.1	Keramik-Vielschicht-Kondensatoren	253
			8.11.4.2	Dick- und Dünnschicht-Kondensatoren	253
			8.11.4.3	Glimmerkondensatoren	253
		8.11.5	Doppelso	chicht-Kondensatoren	254
		8.11.6	Veränder	bare Kondensatoren	256
	8.12	Zusamı	menfassun	g	257
	8.13	Kapazi	täten von l	Leitern und Aufbauten	260
		8.13.1	Kugel üb	er einer unendlichen, leitenden und geerdeten Ebene	260
		8.13.2	Gerader	Draht parallel zur Erde	260
		8.13.3	Zwei koa	axiale Zylinder, konzentrische Rohrleitung	261
		8.13.4	Paralleld	rahtleitung	261
		8.13.5	Durchfül	hrung	262
		8.13.6	Kapazitä	it einer Kugel	262
		8.13.7	Kapazitä	it von zwei Kugeln mit gleichem Radius	262
		8.13.8	Kugelko	ndensator	263
9	Tendon	-4114:340	-		265
,	9.1			and Eigenschaften von Induktivitäten	
	7.1	9.1.1		ines	
		9.1.1	_	gen des Magnetismus	
		9.1.2		nagnetismus	
		9.1.3		sweise der Spule	
		7.1.4	9.1.4.1	Magnetwirkung des Stromes	
			9.1.4.1	Durchflutung	
			9.1.4.2	Magnetische Feldstärke	
			9.1.4.3	Magnetische Flussdichte	
			9.1.4.4	Magnetischer Fluss	
				-	
			9.1.4.6	Induktion	414

Inhaltsverzeichnis XIII

			9.1.4.7	Kraft auf stromdurchflossene Leiter	. 276
			9.1.4.8	Selbstinduktion	278
			9.1.4.9	Induktivität	. 278
			9.1.4.10	Induktive Kopplung	. 278
			9.1.4.11	Induktiver Widerstand	. 279
		9.1.5	Aufbau d	ler Spule	. 280
			9.1.5.1	Luftspule	. 280
			9.1.5.2	Spule mit Kern	. 280
		9.1.6	Kenngrö	Ben von Spulen	. 284
		9.1.7	Eigenkar	pazität der Spule	. 286
		9.1.8	Elektrisc	hes Verhalten von Induktivitäten	. 287
			9.1.8.1	Selbstinduktion	. 288
			9.1.8.2	Ein- und Ausschalten von Gleichspannung	
				an einer Spule	. 288
			9.1.8.3	Spule im Wechselstromkreis	. 290
		9.1.9	Reihen-	und Parallelschaltung von Spulen	. 291
	9.2	Zusamı	nenfassun	g	. 292
	9.3	Dimens	sionierung	von Spulen, Induktivitätswerte	. 293
		9.3.1	A _L -Wert		. 293
		9.3.2	Zylinder	spule, einlagig, mit und ohne Kern	. 294
		9.3.3	Zylinder	spule, einlagig, ohne Kern	. 294
		9.3.4	Zylinder	spule, mehrlagig, ohne Kern	. 296
		9.3.5	Spiralför	mige, ebene Spule	. 299
		9.3.6	Toroidsp	ule	. 299
		9.3.7	Drahtrin	g (ohne Kern)	. 301
		9.3.8	Rechtecl	kige, planare Leiterschleife auf Leiterplatte	. 301
		9.3.9	Quadrati	sche Spule auf Leiterplatte	. 302
		9.3.10	Gerader	Leiter	. 303
		9.3.11	Gerader	Leiter über Massefläche	. 304
		9.3.12	Gerader	Leiter über Massefläche, ein Ende an Masse	. 305
		9.3.13	Gerader	Bandleiter	. 305
		9.3.14	Paralleld	lrahtleitung (Zweidrahtleitung, Doppelleitung)	. 306
		9.3.15	Hohlzyli	inder	. 307
		9.3.16	Koaxiall	eitung	. 307
	9.4	Verwei	ndungszwe	eck, Beispiele zur Anwendung von Spulen	. 308
		9.4.1	Verwend	lung von Spulen im Gleichstromkreis	. 308
		9.4.2	Verwend	lung von Spulen im Wechselstromkreis	. 308
10	Trans	sformate	oren und	Übertrager	. 311
	10.1	Aufgal	en und Ei	nsatzbereiche	. 311
	10.2	Magne	tische Ko	pplung von Spulen	. 311

XIV Inhaltsverzeichnis

	10.3	Gegenin	duktion	12
		10.3.1	Kopplungsfaktor, Streufaktor, Streuinduktivität 3	
			10.3.1.1 Kopplungsfaktor	12
			10.3.1.2 Streufaktor	13
			10.3.1.3 Streuinduktivität	14
			10.3.1.4 Zusammenhang zwischen Kopplungsfaktor	
			und Streufaktor	15
			Gegeninduktionsspannungen	
	10.4	Der verl	ustlose, streufreie Transformator	
		10.4.1	Sekundärseite unbelastet	
			$10.4.1.1 Transformator enhaupt gleichung \ \ldots \ \ldots \ 3$	
			10.4.1.2 Spannungs- und Stromtransformation	20
		10.4.2	Sekundärseite belastet	
			10.4.2.1 Impedanztransformation	21
			10.4.2.2 Übertrager zwischen ohmschen Widerständen 3	22
	10.5	Realer (technischer) Transformator	
		10.5.1	Verlustarten	
		10.5.2	Verlustloser Transformator mit Streuung	
		10.5.3	Transformator mit Wicklungs- und Kernverlusten 3	
	-		Verbesserte M-Ersatzschaltung	
	10.6	Aufbau	und Bauformen	
		10.6.1	Aufbau	29
		10.6.2	Wicklungen	
		10.6.3	Transformatorkern	30
			10.6.3.1 Material	30
			10.6.3.2 Bauformen	
	10.7	Drehstr	omtransformator	32
	10.8	Zusamn	nenfassung	32
11	Elekt	rische La	situngen	35
	11.1		ht der Übertragungsmedien	
	11.2		gen zu elektrischen Leitungen	
		11.2.1	Wellenwiderstand	
		11.2.2	Ausbreitungskoeffizient	
		11.2.3	Ausbreitungsgeschwindigkeit (Phasengeschwindigkeit) 3	
		11.2.4	Phasenlaufzeit	
		11.2.5		341
		11.2.6	Messung von Kurzschluss- und Leerlaufwiderstand 3	
		11.2.7	Eingangsimpedanz	
		11.2.8		343
		11.2.9	Gekoppelte Leitungen	
	11.3		nenfassung	
			5	

11.4	Eindrah	htleitung	346
	11.4.1	Rundleiter nahe einer Massefläche	
	11.4.2	Rundleiter im rechten Winkel einer Massefläche 3	347
	11.4.3	Rundleiter zwischen zwei parallelen Masseflächen	
		(Slab Line)	348
	11.4.4	Rundleiter mit U-Schirm (Trough Line, Channel Line) 3	348
	11.4.5	Rundleiter auf einem Substrat mit rückwärtiger Massefläche. 3	349
	11.4.6	Rundleiter oberhalb eines Substrats mit rückwärtiger	
		Massefläche	349
11.5	Zweidr	rahtleitungen	350
	11.5.1	Paralleldrahtleitung	350
	11.5.2	Zweidrahtleitung über Massefläche	354
	11.5.3	Zweidrahtleitung mit unterschiedlichen Leiterdurchmessern . 3	354
	11.5.4	Zweidrahtleitung in runder Abschirmung	354
	11.5.5	Twisted Pair 3	355
11.6	Koaxia	illeitung	358
	11.6.1	Aufbau und Anwendungen der runden Koaxialleitung 3	358
	11.6.2	Eigenschaften von Koaxialkabeln	359
	11.6.3	Leitungsbeläge von Koaxialleitungen bei hohen Frequenzen . 3	363
	11.6.4	Koaxialkabel mit geschichtetem Dielektrikum	364
	11.6.5	Rundes, exzentrisches Koaxkabel	365
	11.6.6	Koaxialleitung mit quadratischer Schirmung	366
	11.6.7	Koaxiale Bandleitung mit Rechteckform von Schirm	
		und Innenleiter	366
	11.6.8	Koaxiale Bandleitung mit rundem Schirm	367
11.7	Streife	nleitung	367
	11.7.1	Vor- und Nachteile, Grundformen und Anwendungen	
		der Streifenleitung	367
	11.7.2	Materialien und Substrate von Streifenleiterschaltungen	371
	11.7.3	Bauformen von Streifenleitungen	372
	11.7.4	Einfache Näherungsformeln zur Analyse bestimmter	
		Bauformen von Streifenleitungen	372
		11.7.4.1 Doppelbandleitung	373
		11.7.4.2 Mikrostreifenleitung (microstrip)	374
		11.7.4.3 Eingebettete Mikrostreifenleitung	
		(embedded microstrip)	374
		11.7.4.4 Symmetrisch geschirmte Streifenleitung	
		(stripline, centered stripline, triplate)	375
		11.7.4.5 Doppelte, geschirmte Streifenleitung	
		(dual stripline)	375
		11.7.4.6 Asymmetrische, geschirmte Streifenleitung	
		(asymmetric stripline)	376

			11.7.4.7	Gekoppelte Mikrostreifenleitung (differential	
				microstrip)	
			11.7.4.8	Gekoppelte, geschirmte Streifenleitung (differential	
				stripline)	
				einer kapazitiven Last auf $t_{ m pd}$ und $Z_0 \ldots \ldots$	
		11.7.6		eifenleitung (microstrip)	
				Statische Analyse einer Mikrostreifenleitung	
				Dynamische Analyse einer Mikrostreifenleitung	
				Synthese einer Mikrostreifenleitung	
				Dämpfung der Mikrostreifenleitung	
				Frequenzgrenzen der Mikrostreifenleitung	
				Mikrostreifenleitung und weitere Bauelemente	
		11.7.7	Koplanar	e Streifenleitung ($CPW = Coplanar Waveguide$)	391
		11.7.8	Symmetr	ischer Streifenleiter (stripline)	392
		11.7.9		irmter symmetrischer Streifenleiter	
			(shielded	stripline)	393
		11.7.10	Koplanar	re Zweibandleitung (CPS = Coplanar Strips)	393
		11.7.11	Asymme	trische koplanare Zweibandleitung	398
		11.7.12	Koplanar	e Dreibandleitung	398
		11.7.13	Koplanar	e Dreibandleitung mit Massefläche	399
		11.7.14	-	re Streifenleitung (CPW) mit Berücksichtigung	
				rdicke	400
		11.7.15	Koplana	re Streifenleitung (CPW)	
			mit rücks	seitiger Massefläche	401
		11.7.16	Koplana	re Streifenleitung mit oberer Masse-Abschirmfläche	401
		11.7.17	Kantenge	ekoppelter symmetrischer Streifenleiter	
			(narrow	side coupled stripline)	402
	11.8	Bauelen		Microstrip-Technik und Anwendungsbeispiele	
		11.8.1	Rechtwii	nkliger Leitungsknick	404
		11.8.2	Leitungs	unterbrechung	406
		11.8.3	Leiterbre	eitenstufe	407
				eifenleerlauf	407
		11.8.5	Beispiele	e für die Realisierung von Bauelementen	
			und elem	nentaren Schaltungen	409
12					
	12.1			le des Lichtwellenleiters	
	12.2			twellenleitern	
	12.3			ctionsprinzip des Lichtwellenleiters	
	12.4			ng im Lichtwellenleiter, Moden, Dispersion	
	12.5				
	12.6	Gradier	ntenfaser .		. 420

Inhaltsverzeichnis	XVII

	12.7	Monomode-Faser	21
	12.8	Sende- und Empfangselemente von Lichtwellenleitern	22
		12.8.1 Sender von Lichtwellenleitern	22
		12.8.2 Empfänger von Lichtwellenleitern	23
	12.9	Dämpfung von Lichtwellenleitern 42	24
		12.9.1 Bedeutung der Dämpfung	24
		12.9.2 Dämpfung und verwendete Wellenlängen	
		bei Lichtwellenleitern	25
	12.10	Verstärker in LWL-Strecken	26
	12.11	Verbindungen von Lichtwellenleitern	28
		12.11.1 Spleißverbindungen von Lichtwellenleitern	29
		12.11.2 Steckverbindungen für Lichtwellenleiter	
		12.11.3 Einflüsse auf die Einfügungsdämpfung	31
		12.11.4 Einige Beispiele von Standard-LWL-Steckern	32
	12.12	Zusammenfassung	36
13	Hohll	eiter	39
	13.1	Einsatzgebiete, Vor- und Nachteile von Hohlleitern 4	39
	13.2	Grundsätzlicher Aufbau von Hohlleitern	
	13.3	Wellenfortpflanzung und Wellentypen in Hohlleitern 4	41
	13.4	Rechteckhohlleiter	42
	13.5	Rundhohlleiter	48
	13.6	Einige Daten von Hohlleitern	50
	13.7	Hohlleiterbauelemente	
	13.8	Hohlraumresonator mit Rechteckquerschnitt	54
	13.9	Zusammenfassung	
Liste	verwei	ndeter Formelzeichen	59
Litera	ntur .		63
Sachs	erzeic	hnis 4	67