Biologische Arbeitsbücher _____56

Aloysius Wild

Pflanzenphysiologische Versuche in der Schule

Quelle & Meyer Verlag Wiebelsheim

Inhaltsverzeichnis

Einleitung		1	
III II	Zur Geschichte des Biologieunterrichts in Deutschland Die experimentelle Erkenntnismethode Die Bedeutung schulischer Experimente	1 5 7	
Kapitel 1	Biologisch wichtige Makromoleküle und ihre Bausteine I:		
	Mono-, Di- und Polysaccharide	12	
Å	Theoretische Grundlagen	12	
1.1	Einleitung	12	
1.2	Monosaccharide (einfache Zucker)	13	
1.3	Glykoside, Di- und Oligosaccharide	15	
1.4	Polysaccharide	17	
B .	Versuche	20	
V 1.1	Kohlenhydrate	20	
V 1.1.1	Verkohlung von Zuckern: Zersetzung von Zucker mit		
•	Schwefelsäure	20	
V 1.1.2	Verkohlung von Zuckern: Pharaoschlangen	21	
V 1.1.3	Allgemein qualitativer Kohlenhydratnachweis nach MOLISCH	22	
V 1.2	Mono- und Disaccharide	24	
V 1.2.1	Nachweis von reduzierenden Zuckern: Die FEHLINGsche Probe	24	
V 1.2.2	Nachweis von reduzierenden Zuckern: Reduktion von		
	Methylenblau	25	
V 1.2.3	Enzymatischer Glucosenachweis	26	
V 1.2.4	Nachweis von Pentosen	28	
V 1.2.5	Nachweis von Ketohexosen (SELIWANOFF-Probe)	29	
V 1.3	Polysaccharide	30	
V 1.3.1	Makromolekulare Struktur der Polysaccharide		
*	(FARADAY-TYNDALL-Effekt)	30	
V 1.3.2	Nachweis von Stärke	31	
V 1.3.3	Nachweis von Cellulose	33	

Kapitel 2	Biologisch wichtige Makromoleküle und ihre Bausteine II: Aminosäuren, Peptide, Proteine	34
	Ammosauren, repute, rroteine	J-
A	Theoretische Grundlagen	34
2.1	Einleitung	34
2.2	Aminosäuren — Die Bauelemente der Proteine	35
2.3	Die Primärstruktur der Proteine	37
2.4	Die Sekundärstruktur	38
2.5	Tertiär- und Quartärstruktur, supramolekulare Strukturen	40
В	Versuche	42
V 2.1	Aminosäuren	42
V 2.1.1	Nachweis von Kohlenstoff, Sauerstoff, Schwefel,	
	Stickstoff und Wasserstoff in Aminosäuren	42
V 2.1.2	Farbreaktionen mit Ninhydrin	43
V 2.1.3	Xanthoproteinreaktion	44
V 2.1.4	Bestimmung der pH-Werte von Aminosäuren	46
V 2.1.5	Pufferwirkung von Aminosäuren	47
V 2.1.6	Chromatographische Trennung von Aminosäuren	48
V 2.1.7	Auftrennung von Aminosäuren im Fruchtsaft der Zitrone	50
V 2.2	Peptide/Proteine	52
V 2.2.1	Biuret-Reaktion	52
V 2.2.2	Kolloidaler Charakter von Proteinen (FARADAY-TYNDALL-Effekt)	53
V 2.2.3	Bedeutung des Cysteins bei Tertiärstrukturen	54
V 2.2.4	Fällung von Proteinen	55
77 1. 1.4		
Kapitel 3	Eigenschaften und Wirkungsweise von	
	Enzymen	57
A	Theoretische Grundlagen	57
3.1	Einleitung	57
3.2	Chemische Struktur der Enzyme	58
3.3	Enzyme erniedrigen die Aktivierungsenergie	59
3.4	Mechanismus der enzymatischen Katalyse	60

VIII

3.5	Kinetik der Enzymreaktionen	6
3.6	Beeinflussung und Regulation von Enzymen	63
3.7	Einteilung und Nomenklatur der Enzyme	64
В	Versuche	66
V 3.1	Wirkungsweise von Enzymen	60
V 3.1.1	Katalytische und biokatalytische Zersetzung von	
	Wasserstoffperoxid	66
V 3.1.2	Erniedrigung der Aktvierungsenergie durch Urease	68
V 3.1.3	Zersetzung von H ₂ O ₂ durch Katalase bei verschiedenen	
	Substratkonzentrationen	69
V 3.2	Eigenschaften von Enzymen	72
V 3.2.1	Substratspezifität und kompetitve Hemmung der Urease	72
V 3.2.2	Enzymhemmung durch Schwermetalle	74
V 3.2.3	pH-Abhängigkeit des Stärkeabbaus durch die	
	Mundspeichel-Amylase	75
V 3.2.4	Abhängigkeit der Katalaseaktivität vom pH-Wert	70
V 3.2.5	Einfluss der Temperatur auf die Enzymaktivität am Beispiel	
	der Urease	79
V 3.2.6	Todesringe und Todesstreifen	8
V 3.2.7	Der Haushaltstipp: Die Braunfärbung aufgeschnittener Äpfel	83
Kapitel 4	Bau, Eigenschaften und Funktionen von	
	Biomembranen	
	Die pflanzliche Zelle als osmotisches System	85
A	Theoretische Grundlagen	85
4.1	Einleitung	8.5
4.2	Chemischer Aufbau von Membranen	86
4.3	Membranmodelle	88
4.4	Transportphänomene: Diffusion und Osmose	89
4.5	Die pflanzliche Zelle als osmotisches System, Wasserpotential	. 0.
	der Zelle, Plasmolyse und Deplasmolyse	91
B .	Versuche	93
V 4.1	Bau von Biomembranen	93

		IX
V 4.1.1	Vereinfachtes Modell einer Biomembran	93
V 4.2	Transportphänomene: Diffusion und Osmose	94
V 4.2.1	Diffusion von Kaliumpermanganat in Wasser	94
V 4.2.2	Osmose-Grundmodell	95
V 4.2.3	Künstlich osmotische Zellen: Der Chemische Garten	96
V 4.2.4	Osmometermodell der Pflanzenzelle	98
V 4.3	Die osmotischen Eigenschaften der Zelle	100
V 4.3.1	Semipermeabilität von Membranen	100
V 4.3.2	Osmose pflanzlicher Gewebe	102
V 4.3.4	Welken durch Turgorverlust	103
V 4.3.5	Plasmolyse und Deplasmolyse	104
V 4.4	Membranschädigungen	106
V 4.4.1	Einwirkung von Spülmittel auf die Schraubenalge Spirogyra	106
V 4.4.2	"Ausbluten" von Rotkohl durch äußere Einflüsse	107
Kapitel 5	Ernährung und stoffliche Zusammensetzung der Pflanzen	109
Α	Theoretische Grundlagen	109
5.1	Einleitung	109
5.2	Nährelemente und Nährstoffe	110
5.3	Verfügbarkeit der Pflanzennährstoffe	110
5.4	Rhizosphäre und Mykorrhiza	112
5.5	Aufnahme der Nährstoffe durch die Pflanze	113
5.6	Stoffliche Zusammensetzung der Pflanzen	115
5.7	Funktionen der einzelnen Nährelemente und	
	Ernährungszustände der Pflanze	115
В	Versuche	117
V 5.1	Nährstofferschließung im Boden durch Pflanzen	117
V 5.1.1	Ladung der Bodenkolloide	117
V 5.1.2	Protonenabgabe durch die Wurzel	118
V 5.1.3	Ionenaustausch an den Bodenkolloiden	120
V 5.1.4	Der "Marmorplattenversuch"	121
V 5.1.5	Reduktion von Eisen(III)-Ionen durch Wurzeln	122
V 5.1.6	Phosphatasenwirkung	123
V 5.2	Stoffliche Zusammensetzung der Pflanzen	125

V 5.2.1 V 5.2.2 V 5.2.3 V 5.2.4 V 5.3	Bestimmung des Wassergehaltes von Pflanzen Einfache Elementaranalyse der Trockensubstanz Bestimmung des Aschegehaltes an der Trockensubstanz Qualitative Analyse von Pflanzenasche Einfluss der Nährelemente auf das Wachstum der Pflanzen	125 126 127 129
Vanital 6	(Mangelkulturen)	131 - 134
Kapiter o	Wasserhaushalt der Pflanzen	134
A	Theoretische Grundlagen	134
6.1	Einleitung	134
6.2	Besondere physikalische und chemische Eigenschaften des	
	Wassers	134
6.3 6.4	Die Verfügbarkeit von Wasser im Boden Die Wasseraufnahme	136
6.4 6.5	Die Wasseraumanne Die Wasserabgabe	137 139
6.6	Der Mechanismus des Wasserferntransports	141
В	Versuche	143
V 6.1	Die Wasserabgabe	143
V 6.1.1	Blätter als Transpirationsorgane	143
V 6.1.2	Nachweis der Lage und Transpiration der Spaltöffnungen	144
V 6.1.3	Ein Blätter-Mobilé	145
V 6.1.4	Mikroskopieren von Spaltöffnungen	146
V 6.1.5	Modellversuch zum Randeffekt	147
V 6.1.6	Besonderheiten bei Schwimmblättern	148
V 6.1.7	Verdunstungsschutz durch Cuticula und Korkschicht	150
V 6.2	Der Mechanismus des Wasserferntransports	151
V 6.2.1	Das Gipspilzmodell	151
V 6.2.2	Transpirationsmessung mit dem Potometer	152
V 6.2.3	Demonstration des Transpirationssoges	154
V 6.3	Der Wurzeldruck	154
V 6.3.1	"Bluten" verletzter Pflanzen	154
V 6.3.2	Guttation	155

Kapitel 7	Photosynthese I: Energieumwandlung	157
A	Theoretische Grundlagen	157
7.1	Einleitung	157
7.2	Die Chloroplasten als Organelle der Photosynthese	157
7.3	Die Chlorophylle und Carotinoide	159
7.4	Lichtabsorption und Energieleitung in den Pigmentantennen	161
7.5	Das Z-Schema des photosynthetischen Elektronentransports	164
7.6	Photophosphorylierung – Bildung des Energieäquivalents	168
В	Versuche	171
V 7.1	Die Chloroplasten als Organelle der Photosynthese	171
V 7.1.1	Lichtmikroskopische Betrachtung von Chloroplasten	171
V 7.2	Isolation und Trennung der Chloroplastenfarbstoffe	
	(Chlorophylle und Carotinoide)	172
V 7.2.1	Extraktion der Photosynthesepigmente aus Blättern -	,
	Gewinnung eines Rohchlorophyllextrakts	172
V 7.2.2	Trennung der Blattpigmente durch Ausschütteln und	
	durch Verseifung des Chlorophylls	174
V 7.2.3	Papierchromatographische Trennung der	
	Chloroplastenfarbstoffe	176
V 7.2.4	Chromatographie mit Tafelkreide	179
V 7.2.5	Dünnschichtchromatographische Trennung der	
	Chloroplastenfarbstoffe	.181
V 7.3	Lichtabsorption der Chloroplastenfarbstoffe	183
V 7.3.1	Lichtabsorption durch eine Rohchlorophylllösung	
	(Vergleich dicker und dünner Chlorophyllschichten)	183
V 7.3.2	Lichtabsorption durch verschieden dicke Blattschichten	185
V 7.3.3	Lichtabsorption durch eine Carotinlösung	186
V 7.4	Eigenschaften des Chlorophylls	188
V 7.4.1	Chlorophyllabbau durch Säuren – Pheophytinbildung;	
	Kupferchlorophyll	188
V 7.4.2	Umfärben von Blättern beim Kochen (Pheophytinbildung)	189
V 7.4.3	Fluoreszenz von Chlorophyll in Lösung (in vitro)	- 190
V 7.5	Photochemische Aktivität	192
V 7.5.1	Fluoreszenz von Chlorophyll an Blättern (in vivo),	
	Steigerung der Chlorophyllfluoreszenz durch Hemmung der	
	Photosynthese mit Herbiziden und durch tiefe Temperatur	192

V 7.5.2 V 7.5.3 V 7.5.4	Photoreduktion von Methylrot durch Chlorophyll und Ascorbinsäure Einfacher Versuch zur HILL-Reaktion mit DCPIP (Dichlorphenolindophenol) als Elektronenakzeptor Einfacher Versuch zur HILL-Reaktion mit Ferricyanid als Elektronenakzeptor	194 196 199
Kapitel 8	Photosynthese II: Substanzumwandlung und Ökologie der Photosynthese	201
Α	Theoretische Grundlagen	201
8.1 8.2 8.3 8.4 8.5 8.6	Einleitung Die CO ₂ -Assimilation (CALVIN-Zyklus) Lichtatmung (Photorespiration) C ₄ -Pflanzen Crassulaceen-Säurestoffwechsel (CAM) Anpassung an die Lichtbedingungen	201 202 205 207 212 214
В	Versuche	215
V 8.1 V 8.1.1 V 8.1.2 V 8.1.3	Nachweis des bei der Photosynthese gebildeten Sauerstoffs Pflanzen machen "verbrauchte" Luft wieder "frisch" "Nagelprobe": Abhängigkeit der Sauerstoffbildung vom Licht Sauerstoffnachweis mit Indigocarmin: Abhängigkeit	215 215 218
V 8.1.4 V 8.2	der Sauerstoffbildung von Kohlendioxid, Licht und Temperatur Messung der Photosyntheseintensität mit der Aufschwimmmethode Nachweis der photosynthetisch gebildeten Stärke in Blättern	220 224 226
V 8.2.1 V 8.2.2 V 8.2.3	Die Chloroplasten als Ort der photosynthetischen Stärkebildung Abhängigkeit der Stärkebildung vom Licht Abhängigkeit der Stärkebildung vom	226 228
V 8.3 V 8.3.1	Kohlendioxidgehalt der Luft Beobachtungen und Experimente bei C ₄ -Pflanzen Vergleichende Betrachtung der Blattquerschnitte von C ₃ - und C ₄ -Pflanzen im Lichtmikroskop	230 232 232
V.8.3.2	Stärkebildung in Maisblättern	234

		XIII
V 8.3.3	Nachweis des nichtzyklischen Elektronentransportes in den Mesophyllchloroplasten von Maisblättern mit Hilfe	
V 8.3.4	der Hill-Reaktion Nachweis der unterschiedlichen Photosynthese	236
¥ 0.5. 4	Effektivität von C ₃ - und C ₄ -Pflanzen	239
V 8.3.5	Kohlendioxid-Konkurrenz zwischen C ₃ - und C ₄ -Pflanzen	241
V 8.4	Experimente zum Crassulaceen-Säurestoffwechsel (CAM)	244
V 8.4.1 V 8.4.2	Kohlendioxid-Fixierung der CAM-Pflanzen bei Nacht Diurnaler Säurerhythmus der CAM-Pflanzen: pH	244
	Bestimmung im Zellsaft	246
V 8.5 V 8.5.1	Anpassung höherer Pflanzen an die Lichtbedingungen Vergleichende anatomische Betrachtung von Sonnen-	248
	und Schattenblättern	248
Kapitel 9	Dissimilation I: Glykolyse und Gärung	
•	(anaerobe Dissimilation)	251
Α	Theoretische Grundlagen	251
9.1	Einleitung	251
9.2	Bereitstellung des Ausgangssubstrates	252
9.3	Glykolyse	252
9.4	Gärung (anaerober Stoffwechsel)	255
В	Versuche	258
V 9.1 V 9.1.1	Versuche zur Glykolyse und alkoholischen Gärung Die Entstehung von Reduktionsäquivalenten im Verlauf	258
	der Glykolyse	258
V 9.1.2	Die Substratabhängigkeit der alkoholischen Gärung	260
V 9.2	Alkoholische Gärung	262
V 9.2.1	Die Entstehung von Kohlendioxid bei der	
*** 0 0 0	alkoholischen Gärung	262
V 9.2.2	Der Nachweis von Acetaldehyd als Zwischenprodukt der	0.00
VO 2 2	alkoholischen Gärung	263
V 9.2.3 V 9.2.4	Der Nachweis von Ethanol durch Verbrennen Der Nachweis von Ethanol mit Kaliumdichromat	265
V 9.2.4 V 9.2.5	Die Teiglockerung durch Hefe	266 267
V 9.2.5 V 9.2.6	Die Tenglockerung durch Hele Die Temperaturabhängigkeit der Hefe-Enzyme	267 269
v 7.4.0	Die remberaturannankikveit der tiere-enzäme	209

V 9.2.7	Die Energieausbeute gärender Hefepilze	271
V 9.2.8	Die Herstellung von Met	274
V 9.2.9	Die schädigende Wirkung von Alkohol	276
V 9.3	Milchsäuregärung	278
V 9.3.1	Die Herstellung von Joghurt	278
V 9.3.2	Die Herstellung von Sauerkraut	280
V 9.4	Essigsäurebildung	281
V 9.4.1	Die Herstellung von Weinessig	281
`~		
Kapitel 10	Dissimilation II: Atmung (aerobe	
	Dissimilation)	284
A	Theoretische Grundlagen	284
10.1	Einleitung	284
10.2	Mitochondrien	284
10.3	Umwandlung von Pyruvat in Acetyl-Coenzym A	285
10.4	Citratzyklus	286
10.5	Endoxidation, Atmungskette	288
10.6	Alternative Wege der NADH-Oxidation in pflanzlichen	
	Mitochondrien (Überlaufmechanismen)	290
10.7	Atmungsketten-Phosphorylierung (oxidative Phosphorylierung)	292
В	Versuche	294
V 10.1	Kohlendioxidentstehung und Sauerstoffverbrauch bei	
*	der Atmung	294
V 10.1.1	Sichtbarmachen der Atmung	294
V 10.1.2	Die Kohlendioxidentstehung bei der Atmung:	
	qualitativer Nachweis	296
V 10.1.3	Die Kohlendioxidentstehung bei der Atmung:	
	quantitativer Nachweis	297
V 10.1.4	Nachweis des Sauerstoffverbrauchs und der	
	Kohlendioxidproduktion bei der Atmung durch den Kerzentest	300
V 10.1.5	Nachweis des Sauerstoffverbrauchs und der	
	Kohlendioxidproduktion von Weizenkeimlingen durch das	
	Warburg- Manometer	302
V 10.1.6	Vergleich der Respirationsquotienten von	
	kohlenhydratreichen und fettreichen Keimlingen	304

		XV
V 10.1.7	Gegenüberstellung von Atmung und Photosynthese	305
V 10.1.8	Kohlendioxidentstehung bei der menschlichen Atmung	307
V 10.2	Versuche zu konkreten Reaktionsschritten der Atmung	308
V 10.2.1	Modellversuch zur Oxidation des Pyruvats	308
V 10.2.2	Modellversuch zu den wasserstoffübertragenden	
	Enzymen im Citratzyklus	309
V 10.2.3	Dünnschichtchromatographischer Nachweis von Säuren	
	des Citratzyklus in verschiedenen Früchten	311
V 10.2.5	Modellversuch zur Atmungskette	313
V 10.2.6	Die Wärmeabgabe bei der Atmung	316
Kapitel 1	11 Phytohormone	318
A	Theoretische Grundlagen	318
,	.	
11.1	Einleitung	318 ×
11.2	Auxine	320 ×
11.3	Gibberelline -	323
11.4	Cytokinine	324 ¥
11.5	Abscisine	325 X
11.6	Ethylen (Ethen)	326
В	Versuche	327
V 11.1	Auxine	327 ×
V 11.1.1	Der Einfluss von IES auf das Streckungswachstum	327 ×
V 11.1.2	Die Adventivwurzelbildung durch IES	330
V 11.1.3	Der Einfluß von IES auf die apikale Dominanz	332
V 11.1.4	Die Verminderung der Blattabscission durch IES	334 ¥
V 11.2	Gibberelline	336 ×
V 11.2.1	Die Wirkung von Gibberellinen auf das	
	Längenwachstum bei Zwergerbsen	336
V 11.3	Cytokinine	337 ×
V 11.3.1	Die Verzögerung der Blattseneszenz durch Cytokinine	337 ⊀
V 11.3.2	Der Kotyledonen-Biotest	340
V 11.4	Abscisinsäure	341
V 11.4.1	Die Hemmung der Samenkeimung durch Abscisinsäure	341 ¥
V 11.5	Ethylen	343
V 11 5 1	Ethylen-Riotest: Dreifach-Reaktion	3/13

XVI

V 11.5.2 V 11.5.3	Die Förderung des Blattfalls durch Ethylen Die Förderung der Fruchtreifung durch Ethylen	345 346
Kapitel 1	12 Same und Samenkeimung	348
A	Theoretische Grundlagen	348
12.Ì	Einleitung	348
12.2	Bau und Entwicklung der Samen	348
12.3	Die Samenkeimung	352
В	Versuche	356
V 12.1	Bau der Samen	356
V 12.1.1	Bau der Samen der Feuerbohne	356
V 12.2	Quellung	358
V 12.2.1	Beobachtung der Quellung bei Kressesamen	358
V 12.2.2	Quellung als rein physikalischer Prozess	359
V 12.2.3	Demonstration des Quellungsdrucks	360
V 12.3	Keimung	361
V 12.3.1	Darstellung verschiedener Keimungsstadien	361
V 12.3.2	Epigäische und hypogäische Keimung	362
V 12.3.3	Abhängigkeit der Keimung von der Sauerstoffversorgung	364
V 12.3.4	Abbau von Stärke bei der Keimung	365
V 12.4	Sperrmechanismen der Keimung	367
V 12.4.1	Keimungshemmung durch Sperrschichten und	
	Inhibitoren im Samen	367
V 12.4.2	Keimungshemmende Wirkung des Fruchtfleischs	368
V 12.4.3	Einfluss ätherischer Öle auf die Keimung	369
V 12.5	Der ökologische Vorteil der Samenruhe	371
V 12.5.1	Temperaturbehandlung von Weizensamen	371
Kapitel 1	3 Physiologie der Bewegungen	372
A	Theoretische Grundlagen	372
13.1	Einleitung	372
13.2	Bewegungen lebender Organe	373

	•	XVII
13.3	Sonstige Bewegungen	380
13.4	Bewegungen in den Zellen	381
13.5	Die freien Ortsbewegungen (Lokomotionen)	382
В	Versuche	384
V 13.1	Phototropismus	384
V 13.1.1	Lichtinduzierte Krümmungsbewegungen bei Erbsenkeimlingen	384
V 13.1.2	Phototrope Krümmungsversuche am Klinostaten	385
V 13.1.3	Versuche zum Resultantengesetz	387
V 13.1.4	Krümmungsversuch an Senfkeimlingen in Wasserkultur	388
V 13.2	Gravitropismus	389
V 13.2.1	Gravitrope Krümmungen von Sprossachse und Wurzel	389
V 13.2.2	Gravitropische Krümmungsversuche am Klinostaten	390
V 13.3	Chemotropismus	391
V 13.3.1	Chemisch induzierte Krümmungsbewegung	391
V 13.4	Nastien	393
V 13.4.1	Nastische Bewegungen bei Tulpenblüten (Thermonastie)	393
V 13.4.2	Nastische Bewegungen bei der Sinnpflanze Mimosa	
	pudica (Seismonastie)	394
V 13.4.3	Thigmonastische Bewegungen der Blätter von Dionaea	
	(Venusfliegenfalle)	396
V 13.4.4	Rankenbewegungen bei Erbsenkeimlingen (Thigmonastie)	398
V 13.5	Quellungsbewegungen (hygroskopische Bewegungen)	400
V 13.5.1	Quellungsbewegungen bei Kiefernzapfen	400
V 13.6	Bewegungen in den Zellen	401
V 13.6.1	Chloroplastenbewegung bei Mougeotia	401
V 13.6.2	Moosblättchen	402
Literatur		404
Index		406