2791-733 8

Berichte aus der Energietechnik

Richard Huwer

Funktionsprüfung digitaler Distanzschutzeinrichtungen mittels dynamischer Fehler

D 386 (Diss. Universität Kaiserslautern)

Shaker Verlag Aachen 1999

INHALTSVERZEICHNIS

EINLEITUNG	1
2 AUFBAU EINES DIGITALEN DISTANZSCHUTZGERÄTES	6
2.1 Hardware	7
2.2 Software	9
2.3 Ursachen für Fehlverhalten	12
2.3.1 Softwarefehler	13
2.3.2 Betriebssystemfehler und Hardwarefehler	14
2.3.3 Fehler in der Prüfeinrichtung	14
2.3.4 Schnittstellenfehler	14
B PRÜFVERFAHREN	15
3.1 Testverfahren für Schutzgeräte	15
3.1.1 Typprüfung	15
3.1.2 Stückprüfung	16
3.1.3 Betriebsprüfung	16
3.2 Prüftechniken	17
3.2.1 Verwendung simulierter Daten	17 18
3.2.2 Verwendung realer Daten	
3.3 Prüfverfahren des Software-Engineerings 3.3.1 Dynamischer Test	19 20
3.3.1.1 Funktionstest	20 22
3.3.1.2 Strukturtest	22
3.3.1.3 Diversifikation	23
3.3.1.4 Zufallstest	23
3.3.1.5 Übergeordneter Test	23
3.3.2 Statische Analyse, symbolischer Test und Verifikation	24
3.4 Beurteilung der existierenden Verfahren	25
3.5 Anforderungen an ein neues Verfahren	26
4 MODELLBILDUNG	28
4.1 Variable	29
4.1.1 Attribute	29
4.1.2 Aquivalenzklassen	31
4.1.2.1 Variablen mit diskretem Wertebereich 4.1.2.2 Variablen mit kontinuierlichem Wertebereich	, 32 32
4.2 Module 4.2.1 Module mit Gedächtnis	35 35
4.2.2 Module mit Gedachtnis 4.2.2 Module ohne Gedächtnis	37
4.2.3 Äquivalenzklassenlose Module	38
4.3 Verhaltensmodell eines Distanzschutzrelais	39
4.4 Reduktion der Testvielfalt	41
4.4.1 Beobachtung innerer Variablen	41
4.4.2 Reduktion durch Abstraktion	42
S WAHL DER EINGABEDATEN	45
5.1 Ideale Eingangssignale	45
5.1.1 Schutzunschärfe	45
5.1.2 Netzunschärfe	46
5.1.3 Stationäre Größen	48
5:1.3.1 Berechnung über Impedanzebene 5.1.3.2 Berechnung mittels Simulationsprogramm	48 49
5.1.3.2 Derectning mittels Simulationsprogramm 5.2 Testnetz	49 50
D.O. LEBURELY	n n

5.2.1 Stichleitung 5.2.2 Anordnung mit Gegeneinspeisung	51 52
5.3 Kennlinienkorrektur	53
5.3.1 Anregekennlinien in der Impedanzebene	54
5.3.1.1 Unterspannungsanregung	54
5.3.1.2 Überstromanregung	57
5.3.1.3 Winkelkriterium	59
5.3.1.4 Gemeinsame Darstellung	59
5.3.2 Schutzkennlinien bei Gegeneinspeisung	61
5.3.2.1 Transformation des Koordinatensystems	63
5.3.2.2 Unterspannungsanregung	66
5.3.2.3 Überstromanregung	67
5.3.2.4 Winkelkriterium 5.3.2.5 Auslösekennlinie	68 69
5.3.2.6 Beispiel	69
6 NETZZUSTÄNDE UND ELEMENTARE FEHLER	74
. ,	
6.1 Bestimmung der Netzzustände	75 75
6.1.1 Åquivalenzklassenkombinationen 6.1.2 Eingabebedingungen	76
6.1.3 Fehlerorte	78
6.1.4 Reduktion	82
6.2 Bestimmung der elementaren Fehler	84
7 DYNAMISCHE FEHLER	87
7.1 Netzzustände	87
7.1.1 Ausgangsmenge	87
7.1.2 Reduktionsregeln	89
7.1.3 Fehlerartmatrizen	91
7.1.4 Eliminieren von Fehlerfällen	95
7.2 Wechselzeitpunkte	96
7.2.1 Gängige Methode	97
7.2.2 Verhaltensmodell	98
7.2.3 Messung	103
7.2.4 Attributdetektionsmatrix	104
8 PRÜFERGEBNISSE	107
8.1 Beobachtbarkeit	107
8.1.1 Binäre Ausgänge	107
8.1.2 Serielle Schnittstelle	109 109
8.1.3 Herstellerinterne Schnittstelle 8.1.4 Prüfeinrichtung	110
8.1.5 Minimale Signallänge und maximale Verzögerung	111
8.2 Klassifizierung der Ergebnisse	114
9 DIE TESTMETHODE IM ÜBERBLICK	115
9.1 Testvorbereitungen	115
9.2 Ermittlung der Fehlermengen	116
9.2.1 Netzzustände 9.2.2 Elementare Fehler	118 118
9.2.2 Diementare Fenier 9.2.3 Dynamische Fehler	118
•	119
9.3 Prüfungsauswertung 9.4 Reduktionspotential	119
·	
10 BEISPIELE	122
10.1 Unterspannungsabhängige Überstromanregung	122

10.1.1 Modellbeschreibung	123
10.1.2 Testfallermittlung	123
10.2 Auslöseentscheid	12
10.2.1 Modellbeschreibung	126
10.2.2 Testfallermittlung	120
10.3 Spannungsspeicher	12'
10.3.1 Modellbeschreibung 10.3.2 Testfallermittlung	128 129
10.5.2 Testianer mittiding	12:
11 ZUSAMMENFASSUNG	135
I ANHANG	133
I.1 Softwaretestverfahren	133
I.1.1 Funktionstests	133
I.1.2 Strukturtests	134
I.1.3 Diversifikation	138
I.2 Rechengange	13
I.2.1 Herleitung von Gleichung (5.44)	138
I.3 Herleitung von Gleichung (5.57)	130
I.4 Herleitung von Gleichung (5.60)	137
I.5 Äquivalenzklassenkombinationen der Überstromanregung	139
I.6 Netzzustände der Überstromanregung	140
I.7 Spurverläufe der Überstromanregung	14:
I.8 Richtungswechsel durch Topologieumschaltung	149
I.9 Spurverläufe der Unterspannungsanregung	144
I.10 Spurverläufe des Spannungsspeichers	148
I.11 Prüfvorschriften	14'
I.11.1 Typprüfung	14'
I.11.2 Stückprüfung	14'
	148