Fortschritt-Berichte VDI

Reihe 21

Elektrotechnik

Dipl.-Ing. Wolfgang Rieger, Stuttgart

Nr. 284

Numerische Behandlung nichtlinearer inverser elektromagnetischer Streuprobleme mit iterativen Optimierungsmethoden

Inhaltsverzeichnis

Fo	orme	lzeichen und Abkürzungen	X						
1	Ein	nleitung und Zusammenfassung							
	1.1	Motivation	1						
	1.2	Stand der Technik	2						
	1.3	Ziel und Inhalt der Arbeit	4						
2	Dir	Direkte elektromagnetische Streuprobleme							
	2.1	Die Maxwellschen Gleichungen	8						
	2.2	Das komplexe Poynting-Theorem	10						
	2.3	Das Randwertproblem							
	2.4	Eindimensionale Streuprobleme	13						
		2.4.1 Der eindimensionale TM-Fall	13						
		2.4.2 Der eindimensionale TE-Fall	15						
	2.5	Zweidimensionale Streuprobleme							
		2.5.1 Der zweidimensionale TM-Fall	18						
		2.5.2 Der zweidimensionale TE-Fall	20						
	2.6	Dreidimensionale Streuprobleme	22						

3	Nu	nerisc	he Behandlung direkter elektromagnetischer Streuproble-				
	me			2			
	3.1	Die Projektionsmethode					
		3.1.1	Die Kollokationsmethode	2			
		3.1.2	Das Galerkin-Verfahren	2			
	3.2	Diskre	etisierung mit finiten Elementen	2			
		3.2.1	Isoparametrische Knotenelemente	2			
		3.2.2	Konstante Elemente	2			
		3.2.3	Kantenelement mit stetiger Tangentialkomponente	3			
	3.3	Diskre	etisierung der Feldintegralgleichungen	3			
		3.3.1	Exakt bestimmte Kollokation	3			
		3.3.2	Anwendung des Galerkin-Verfahrens	3			
	3.4	Nume	rische Integration	3			
	3.5	3.5 Numerische Beispiele					
	•	3.5.1	TM Streuung am dielektrischen Zylinder	3			
		3.5.2	TE Streuung am dielektrischen, verlustbehafteten Zylinder	3			
		3.5.3	Streuung an einer Kugel	3			
4	Grundlagen inverser Probleme						
	4.1	Der Begriff des inversen Problems					
	4.2	Schlec	ht gestellte Probleme	4			
	4.3	Fredho	olmsche Integralgleichungen 1. Art	4			
	4.4	Verall	gemeinerte Inverse	4			
	4.5	Singulärwertzerlegung					
	4.6	Regula	arisierungsverfahren	5			
		4.6.1	Tikhonov-Regularisierung	5			
		162	Regularizierung mit totaler Variation	=			

5	Inverse elektromagnetische Streuprobleme				
	5.1		ellierung des inversen elektromagnetischen Streuproblems als nichtes Optimierungsproblem	55	
	5.2	Einde	utigkeit des inversen Streuproblems	60	
6	Gru	ındlage	en iterativer Optimierungsmethoden	63	
	6.1	Defini	tion einer Abstiegsrichtung	63	
	6.2	Metho	oden des steilsten Abstiegs	65	
,	6.3	Metho	oden mit konjugierten Richtungen	66	
,	6.4	Metho	ode variabler Metrik	70	
	6.5	Konju	giertes Gradientenverfahren	72	
7	Numerische Behandlung des nichtlinearen inversen Streuproblems mit Hilfe iterativer Optimierungsmethoden				
	7.1		tfunktion in Abhängigkeit von reellen Parametern	74	
		7.1.1	Lösungsvektor bei isotropen Medien	78	
		7.1.2	Lösungsvektor bei anisotropen Medien	79	
		7.1.3	Lösungsvektor bei biaxialen Medien	80	
	7.2	Die G	radienten für das inverse Streuproblem	80	
		7.2.1	Gradient des Residuenanteils	81	
		7.2.2	Gradient der Tikhonov-Regularisierung	82	
		7.2.3	Gradient der totalen Variation	83	
		7.2.4	Bestimmung der Abstiegsschrittweite	86	
	7.3	Beispi	iele rekonstruierter Objekte	88	
		7.3.1	Rekonstruktionen aus 1D-TM Streudaten	90	
			7.3.1.1 Stetiges, inhomogenes Profil	90	
			7.3.1.2 Profil mit einem Sprung	92	
		7.3.2	Vergleich der aus 1D-TE und 1D-TM Streudaten gewonnenen		
			Rekonstruktionen	94	
		7.3.3	Rekonstruktionen aus 2D-TM Streudaten	96	
			7.3.3.1 Rekonstruktionen mit der totalen Variation	97	

			7.3.3.2	Rekonstruktionen mit der Tikhonov-Regularisierung		97
			7.3.3.3	Konvergenzuntersuchung		99
		7.3.4	Rekonst	ruktionen aus 2D-TE Streudaten		100
			7.3.4.1	Inhomogene Materialverteilung		100
			7.3.4.2	Stückweise homogene Materialverteilung		101
			7.3.4.3	Rekonstruktion aus verrauschten Streudaten		102
		7.3.5	Rekonst	ruktion eines biaxialen Objektes aus 2D-TE		
			Streuda	ten		103
8	Rel	constru	ıktionsal	lgorithmus mit integrierter a priori Information		107
	8.1	Dielek	trische, v	erlustbehaftete Medien		108
	8.2	Dielektrische, verlustlose Medien				111
	8.3	Leitfä	Leitfähige Medien			
	8.4	Beispiele rekonstruierter Objekte				113
		8.4.1	Biaxiale	s, dielektrisches, verlustbehaftetes Objekt		113
		8.4.2	Anisotro	opes, dielektrisches, verlustbehaftetes Medium		115
		8.4.3	Dreidim	ensionales Objekt		119
		8.4.4	Rekonst	ruktionen aus den Ipswich Meßdaten		121
			8.4.4.1	Variabler Kalibrierungsfaktor		124
			8.4.4.2	Rekonstruktion des Objektes IPS007		125
			8.4.4.3	Rekonstruktion des Objektes IPS009		126
9	Sch	lußfolg	gerungen	und Ausblick		129

Anhänge

A	Her	leitung	g der Integralgleichungen	132		
	A.1	Der ei	ndimensionale TM-Fall	132		
	A.2	.2 Der eindimensionale TE-Fall				
	A.3	Der zv	weidimensionale TM-Fall	138		
	A.4	Der dr	reidimensionale Fall	141		
	A.5	Der zv	weidimensionale TE-Fall	144		
В	Nur	neriscl	he Integration	145		
\mathbf{C}	Her	leitung	g der Gradienten	151		
	C.1	Verfah	nren ohne eingeschränkten Wertebereich	151		
		C.1.1	Gradient des Residuenanteils	151		
		C.1.2	Gradient der Tikhonov-Regularisierung	155		
		C.1.3	Gradient der totalen Variation	155		
	C.2	Verfahren mit eingeschränktem Wertebereich				
		C.2.1	Gradient des Residuenanteils	157		
		C.2.2	Gradient der Tikhonov-Regularisierung	160		
		C.2.3	Gradient der totalen Variation	161		
	C.3	Verfah	ren mit variablem Kalibrierungsfaktor	163		
		C.3.1	Gradient des Residuenanteils	163		
		C.3.2	Gradient der Tikhonov-Regularisierung	166		
		C.3.3	Gradient der totalen Variation	166		
Li	terat	urverz	zeichnis	168		