Andreas Kugi

Non-linear Control Based on Physical Models

Electrical, Mechanical and Hydraulic Systems

With 47 Figures

Contents

1.	Fundamentals 1						
	1.1	Stability of Equilibria					
		1.1.1	Physical Observation I	2			
		1.1.2	Mathematical Formulation I: Lyapunov's Direct Method	3			
		1.1.3	Physical Observation II	3			
		1.1.4	Mathematical Formulation II: LaSalle's Invariance Prin-				
			ciple	4			
		1.1.5	Exponential Stability	6			
	1.2						
		1.2.1	Physical Observation III	6			
		1.2.2	Mathematical Formulation III: The Notion of Dissipa-				
			tivity	10			
		1.2.3	Passivity	11			
		1.2.4	Positive Realness	14			
	1.3	Absol	ute Stability and the Popov Criterion	19			
		1.3.1	Physical Observation IV	19			
		1.3.2	Mathematical Formulation IV: The Notion of Absolute				
			Stability and the Popov Criterion	19			
	1.4	PCH-	systems and PCHD-systems	23			
2.	Son	Some Non-linear Control Design Strategies					
	2.1	Non-linear State Feedback H_2 -design					
	2.2	Non-linear State Feedback H_2 -design with Integral Term 3					
	2.3	Non-linear State Feedback H_{∞} -design					
	2.4	Passivity-based Control (PBC) 3					
3.	Ele	Electromagnetic Systems 42					
	3.1	Basic Circuit Relations					
	3.2	P Energy Based Description					
		3.2.1	Independent Set of Inductor Currents and Capacitor				
			Voltages	44			
		3.2.2	Dependent Set of Inductor Currents and Capacitor				
			Voltages	48			
	3.3	Energ	y Based Description with Full Topological Information.	50			

		3.3.1	Dissipative Electrical Systems in the Form of a PCHD-	
			system	50
		3.3.2	Application: Simple Electric Circuit	55
		3.3.3	Application: Three-phase Power System	57
	3.4		-controlled Electrical Systems	60
		3.4.1	Energy Based Description	60
		3.4.2	Energy Based Description with Full Topological Infor-	
			mation	61
	3.5		cation: Non-linear Control of a Ćuk-converter	67
		3.5.1	Mathematical Model	68
		3.5.2	Non-linear State Feedback H_2 -design	69
		3.5.3	Non-linear State Feedback H_2 -design with Integral Term	70
		3.5.4	The Experimental Setup	72
		3.5.5	Measurement and Simulation Results of the Closed-loop	77
	3.6	\mathbf{E} lectr	comechanical System: The Energy/Co-energy Concept	79
		3.6.1	Simple Application: Specific Influence on the Electro-	
			static/Electromagnetic Coupling Force	82
4.	Me	chanic	al PCH-systems	85
	4.1	Funda	amentals of Lagrangian and Hamiltonian Systems	86
		4.1.1	The Finite-dimensional Case	86
		4.1.2	The Infinite-dimensional Case	90
	4.2	Contr	oller Design Strategies	92
		4.2.1	Preliminaries	92
		4.2.2	Some Remarks Concerning the Stability of Infinite-	
			dimensional Systems	95
		4.2.3	Non-linear H_2 -design for PCH-systems	95
		4.2.4	Non-linear H_{∞} -design for PCH-systems	97
		4.2.5	PD-design for PCH-systems	98
		4.2.6	Disturbance Compensation for PCH-systems	99
	4.3	Appli	cation: Control of Smart Piezoelectric Beam Structures . 1	100
		4.3.1	Preliminaries 1	101
		4.3.2	Beam Structure under Consideration 1	103
		4.3.3	Actuator and Sensor Design 1	104
		4.3.4	Mathematical Model for the Beam with Lateral Loadings	109
		4.3.5	Controller Design for the Beam with Lateral Loadings	112
		4.3.6	Mathematical Model for the Beam with an Axial Sup-	
			port Motion	117
		4.3.7	Controller Design for the Beam with an Axial Support	
			Motion	118
5.	Hy	draulio	c Drive Systems	121
	5.1		-controlled Translational Piston Actuator	
		5.1.1	Mathematical Model	
		5.1.2	Controller Design	

5.2	Applie	cation: Hydraulic Gap Control (HGC) in Rolling Mills . 131
	5.2.1	System Description
	5.2.2	Mill Stand Model
	5.2.3	Material Deformation Model
	5.2.4	HGC with a Double-acting Hydraulic Ram 135
	5.2.5	HGC with a Single-acting Hydraulic Ram 138
5.3	Reject	tion of Periodic Disturbances (Eccentricity Compensa-
	tion).	
5.4	Pump	-displacement-controlled Rotational Piston Actuator 148
	$5.4.1^{-1}$	Mathematical Model of the Pump-motor-unit 149
5.5	Discre	te Open-loop Observer for the Swash-plate Angle 156
	5.5.1	Mathematical Model of a Swash-plate Mechanism 157
	5.5.2	Model Simplification Based on Physical Considerations 159
	5.5.3	Discrete Open-loop Observer and Measurement Results 162
-		
Referen	ces	
Index		

٢

5