2858 - 1446

Pharmacophores and Pharmacophore Searches

Edited by Thierry Langer and Rémy D. Hoffmann

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

	Preface XIII
	A Personal Foreword XV
	List of Contributors XVII
Part I	Introduction
I	Pharmacophores: Historical Perspective and Viewpoint from a Medicinal Chemist 3 Camille G. Wermuth
1.1	Definitions 3
1.1.1	Functional Groups Considered as Pharmacophores: the Privileged Structure Concept 4
1.2	Historical Perspective 4
1.2.1	Early Considerations About Structure-Activity Relationships 4
1.2.2	Early Considerations About the Concept of Receptors 5
1.2.3	Ehrlich's "Magic Bullet" 5
1.2.4	Fischer's "Lock and Key" 6
1.3	Pharmacophores: the Viewpoint of a Medicinal Chemist 6
1.3.1	Two-dimensional Pharmacophores 6
1.3.1.1	Sulfonamides and PABA 6
1.3.1.2	Estrogens 7
1.3.2	An Early Three-dimensional Approach: the Three-point Contact Model 7
1.3.2.1	Clonidine and Its Interaction with the a-Adrenergic Receptor
1.3.3	Criteria for a Satisfactory Pharmacophore Model 9
1.3.4	Combination of Pharmacophores 10
1.4	Conclusion 11
	References 11

٧|

8

VI Contents

Part II	Pharmacophore Approaches
2	Pharmacophore Model Generation Software Tools 17
	Konstantin Poptodorov, Tien Luu, and Rémy D. Hoffmann
2.1	Introduction 17
2.2	Molecular Alignments 18
2.2.1	Handling Flexibility 18
2.2.2	Alignment Techniques 19
2.2.3	Scoring and Optimization 20
2.3	Pharmacophore Modeling 21
2.3.1	Compound Structures and Conformations 21
2.3.2	Representation of Interactions in the Pharmacophore Models 22
2.3.3	Conformational Expansion 22
2.3.4	Comparison 23
2.3.5	Pharmacophores, Validation and Usage 23
2.4	Automated Pharmacophore Generation Methods 23
2.4.1	Methods Using Pharmacophore Features and Geometric
	Constraints 24
2.4.1.1	DISCO, GASP and GALAHAD 24
2.4.1.2	Catalyst 27
2.4.1.3	Phase 32
2.4.1.4	Pharmacophores in MOE 34
2.4.2	Field-based Methods 36
2.4.2.1	CoMFA 36
2.4.2.2	XED 37
2.4.3	Pharmacophore Fingerprints 38
2.4.3.1	ChemX/ChemDiverse, PharmPrint, OSPPREYS, 3D Keys,
	Tuplets 39
2.5	Other Methods 40
2.5.1	SCAMPI 40
2.5.2	THINK 41
2.5.3	Feature Trees 43
2.5.4	ILP 43
2.6	Conclusions 43
	References 44
3	Alignment-free Pharmacophore Patterns –
	A Correlation-vector Approach 49
	Steffen Renner, Uli Fechner, and Gisbert Schneider 49
3.1	Introduction 49
3.2	The Correlation-vector Approach 51
3.2.1	The Concept 51
3.2.2	Comparison of Molecular Topology. CATS 52
3.2.3	Comparison of Molecular Conformation: CATS3D 56
3.2.4	Comparison of Molecular Surfaces: SURFCATS 57

- 3.3 Applications 58
- 3.3.1 Retrospective Screening Studies 58
- 3.3.2 Scaffold-hopping Potential 64
- 3.3.3 Prospective Virtual Screening 69
- 3.4 New Methods Influenced by the Correlation-vector Approach 72
- 3.4.1 "Fuzzy" Pharmacophores: SQUID 72
- 3.4.2 Feature Point Pharmacophores: FEPOPS 76

77

- 3.5 Conclusions 76 Acknowledgments Abbreviations 77
 - References 78

4 Feature Trees: Theory and Applications

from Large-scale Virtual Screening to Data Analysis 81 Matthias Rarey, Patrick Fricker, Sally Hindle, Günther Metz, Christian Rummey, and Marc Zimmermann

- 4.1 Introduction: from Linear to Non-linear Molecular Descriptors 81
- 4.2 Creating Feature Trees from Molecules 82
- 4.3 Algorithms for Pairwise Comparison of Feature Trees 85
- 4.3.1 Recursive Division: the Split-search Algorithm 86
- 4.3.2 Subsequently Growing Matchings: the Match-search Algorithm 87
- 4.3.3 Match-Search with Gaps: the Dynamic Match-search Algorithm 89
- 4.3.4 Building Multiple Feature Tree Models 91
- 4.4 Feature Trees in Similarity Searching and Virtual Screening 92
- 4.4.1 Virtual Screening 92
- 4.4.2 Virtual Screening Based on Multiple Query Compounds 95
- 4.4.3 Tagged Feature Trees 97
- 4.5 Searching Combinatorial Fragment Spaces with Feature Trees 99
- 4.5.1 Search Algorithm 100
- 4.5.2 Set-up of Fragment Spaces 102
- 4.5.3 Searching in Fragment Spaces 105
- 4.6 Multiple Feature Tree Models: Applications in HTS Data Analysis 108
- 4.7 Drawing Similar Compounds in 2D Using Feature Tree Mappings 111
- 4.8 Conclusion 113 Acknowledgments 113 References 114

5 Concept and Applications of Pseudoreceptors 117

Klaus-Jürgen Schleifer

- 5.1 Introduction 117
- 5.2 Methodology 118
- 5.3 Application of Pseudoreceptors 123
- 5.4 Conclusion 129
 - References 130

6	Pharmacophores from Macromolecular Complexes
	with LigandScout 131
	Gerhard Wolber and Robert Kosara
6.1	Introduction 131
6.1.1	Structure-based Drug Design Methods 131
6.1.2	Why Structure-based Pharmacophores? 132
6.2	The Data Source: Clean-up and Interpretation of PDB Ligand
	Molecules 132
6.2.1	Topological Analysis 133
6.2.2	Geometric and Semantic Analysis 135
6.2.3	Double Bond Distribution 136
6.3	Chemical Feature-based Pharmacophores Used by LigandScout 136
6.3.1	Characteristics of Chemical Features: Specific or Comparable? 137
6.3.2	Fully Automated Perception of Chemical Features 138
6.3.3	Vectors: Hydrogen Bonding 139
6.3.4	Points: Lipophilic Contacts and Charge-transfer Interactions 139
6.3.4.1	Hydrophobic Contacts 139
6.3.4.2	Positive and Negative Ionizable Areas 140
6.4	Overlaying Chemical Features 140
6.5	3D Visualization and Interaction 141
6.5.1	Core and Environment Visualization 141
6.5.2	Pharmacophore Visualization 143
6.5.3	Interaction 144
6.6	Application Examples: Pharmacophore Generation
	and Screening 145
6.6.1	HRV Coat Protein Inhibitor 146
6.6.2	ABL Tyrosine Kinase Inhibitor 146
6.7	Conclusion 147
	Acknowledgments 148
	References 148
_	
7	GRID-based Pharmacophore Models:
	Concept and Application Examples 151
7 1	Francesco Ortuso, Stefano Alcaro, and Thierry Langer
7.1	Introduction 151
7.2	Theoretical Basis of the GBPM Method 152
7.3	Application Examples 155
7.3.1	Protein–Protein Interaction: XIAP 155
7.3.2	Protein–Protein Interaction: the Interleukin 8 Dimer 159
7.3.3	DNA-Ligand Interaction 162
7.4	Conclusions 168

References 168

Contents IX

8	"Hot Spot" Analysis of Protein-binding Sites as a Prerequisite for Structure-based Virtual Screening and Lead Optimization 171 Ruth Brenk and Gerhard Klebe
8.1	Introduction 171
8.2	Calculating "Hot Spots" 171
8.3	From "Hot Spots" to Molecules 174
8.4	Real-life Examples 177
8.5	Replacement of Active-site Water Molecules 185
8.6	Conclusions 190
	Acknowledgments 190 References 191
9	Application of Pharmacophore Fingerprints
	to Structure-based Design and Data Mining 193
	Prabha Karnachi and Amit Kulkarni
9.1	Introduction 193
9.2	Applications of 3D Pharmacophore Fingerprints 194
9.2.1	Focused/Diverse Library Design Using Pharmacophore Fingerprints 194
9.2.2	Analyzing Protein–Ligand Interactions Using Pharmacophore
	Fingerprints 195
9.2.3	Virtual High-throughput Screen (vHTS) and Protein Selectivity 196
9.2.3.1	Application of FLIP Technology 199
9.3	Conclusion 203
	Acknowledgments 204
	References 204
10	SIFt: Analysis, Organization and Database Mining for Protein-Inhibitor Complexes. Application to Protein Kinase Inhibitors 207
	Juswinder Singh, Zhan Deng, and Claudio Chuaqui
10.1	Introduction 207
10.2	How to Generate a SIFt Fingerprint 208
10.3	Profile-based SIFts 210
10.4	SIFt and the Analysis of Protein Kinase – Inhibitor Complexes 211
10.5	Canonical Protein – Small Molecule Interactions in the Kinase
	Family 212
10.6	Clustering of Kinase Inhibitors Based on Interaction
	Fingerprints 212
10.7	Profile Analysis of ATP, p38 and CDK2 Complexes 215
10.8	Virtual Screening 218
10.9	Use of p-SIFT to Enrich Selectively p38, CDK2 and ATP
	Complexes 219
10.10	Conclusion 220
	Acknowledgments 222
	References 222

X Contents

11	Application of Structure-based Alignment Methods for 3D QSAR Analyses 223
	Wolfgang Sippl
11.1	Introduction 223
11.2	Why is 3D QSAR So Attractive? 225
11.3	CoMFA and Related Methods 226
11.3.1	CoMFA 226
11.3.2	CoMSIA 227
11.3.3	GRID/GOLPE 227
11.4	Reliability of 3D QSAR Models 228
11.5	Structure-based Alignments Within 3D QSAR 230
11.6	Conclusion 241
	Acknowledgments 243
	References 244
Part III	Pharmacophores for Hit Identification and Lead Profiling: Applications and Validation
12	Application of Pharmacophore Models in Medicinal Chemistry 253 Fabrizio Manetti, Maurizio Botta, and Andrea Tafi
12.1	Introduction 253
12.2	Building Pharmacophore Models Able to Account for the Molecular
	Features Required to Target the a_1 Adrenergic Receptor (a_1 -AR) and its Subtypes 254
12.2.1	A Pharmacophore Model for a_1 -AR Antagonists 254
12.2.1	Pharmacophore Building 254
12.2.1.1	Pharmacophore Analysis 257
12.2.1.2	Validation of the Pharmacophore Model 259
12.2.1.3	Hit Search Through Database Mining 260
12.2.1.4	Towards a Pharmacophore Model for the a_{1D} -AR Subtype 261
12.2.2.1	A Preliminary Model 261
12.2.2.1	An Improved (Simplified) Model 264
12.2.2.2	Use of Excluded Volume Features in the Rationalization
12.5	of the Activity Data of Azole Antifungal Agents 268
12.3.1	Excluded Volume Spheres in Structure-based and Ligand-based
12.3.1	Pharmacophore Studies 268
12.3.2	Issues Inherent in the Rational Design of Azole Antifungal
	Agents 270
12.4	Conclusion 277
	References 279

13	GPCR Anti-target Modeling: Pharmacophore Models to Avoid GPCR-mediated Side-effects 283 Thomas Klabunde
13.1	Introduction: GPCRs as Anti-targets 283
13.2	In Silico Tools for GPCR Anti-target Modeling 285
13.3	GPCR Anti-target Pharmacophore Modeling: the a_{1a} Adrenergic
	Receptor 285
13.3.1	Generation of Cross-chemotype Pharmacophore Models 286
13.3.2	Description of Cross-chemotype Pharmacophore Models 287
13.3.3	Validation of Anti-target Pharmacophore Models 289
13.3.3.1	Virtual Screening: Hit Rates and Yields 289
13.3.3.2	Virtual Screening: Fit Values and Enrichment Factors 290
13.3.4	Mapping of Pharmacophore Models into Receptor Site 292
13.3.5	Guidance of Chemical Optimization to Avoid GPCR-mediated
	Side-effects 294
13.4	Conclusion 295
	References 296
14	Pharmacophores for Human ADME/Tox-related Proteins 299
	Cheng Chang and Sean Ekins
14.1	Introduction 299
14.2	Cytochrome P450 301
14.3	UDP-glucuronosyltransferase 304
14.4	P-glycoprotein (P-gp) 304
14.5	Human Peptide Transporter 1 306
14.6	Apical Sodium-dependent Bile Acid Transporter (ASBT)) 307
14.7	Sodium Taurocholate-transporting Polypeptide (NTCP) 307
14.8	Nucleoside Transporters 307
14.9	Organic Cation Transporter 1 and 2 308
14.10	Organic Anion-transporting Polypeptides (OATPs) 309
14.11	Breast Cancer Resistance Protein (BRCP) 311
14.12	The Nuclear Hormone Receptors 312
14.13	Human Ether-a-go-go Related Gene 314
14.14	Conclusion 315
	Acknowledgments 316
	References 316
15	Are You Sure You Have a Good Model? 325
	Nicolas Triballeau, Hugues-Olivier Bertrand, and Francine Acher
15.1	Introduction 325
15.2	Validation Methods: Different Answers Brought to Different
	Questions 326
15.2.1	Software-related Validation Methods 326
15.2.1.1	Ligand-based Pharmacophore Research 326
15.2.1.2	Protein Structure-based Pharmacophore Research 329

- XII Contents
 - 15.2.1.3 Critical Remarks Regarding Structure-based Pharmacophore Models 329 15.2.2 Visual Inspection 330 15.2.3 Consistency with Structure – Activity Relationships 331 15.2.3.1 Some Limitations of Computer Programs 331 15.2.3.2 Retained Chemical Features 332 15.2.3.3 Spatial Arrangement 332 15.2.3.4 3D-QSAR Pharmacophore Models 333 15.2.4 External Data to Back Up a Pharmacophore Model 335 15.2.4.1 Biophysical Data 335 15.2.4.2 Other Published Pharmacophore Models 335 15.2.4.3 The "Test Set" Approach and the Kubinyi Paradox 336 15.2.5 Database Mining 337 15.2.5.1 Some Metrics to Assess Screening Performances 338 15.2.5.2 The ROC Curve Approach 341 15.3 A Successful Application: the Ultimate Validation Proof 343 15.3.1 Validation of Pharmacophore Models for Virtual Screening 343 15.3.1.1 Which Validation Method Should One Insist On? 344 15.3.2 Validation of Pharmacophore Models to Guide Medicinal and Computational Chemistry 345 15.3.3 Validation of Pharmacophore Models for Activity Prediction 346 15.3.3.1 Which Validation Method Should One Insist On? 346 15.4 Case Study: a New Pharmacophore Model for mGlu4R Agonists 348 15.4.1 Metabotropic Glutamate Receptors as Potential Therapeutic Targets -348 15.4.2 Pharmacology of Metabotropic Glutamate Receptor Subtype 4 (mGlu4) 348 15.4.3 Training Set Elaboration 351 15.4.4 Strategy for Perceiving the Pharmacophore 352 15.4.5 Four Criteria to Validate our Pharmacophore Model 353 15.4.6 Results of Our Pharmacophore Model Research with Catalyst-Hypo-Gen and HypoRefine 354 15.4.7 Description of the Two Retained Pharmacophore Models 356 15.4.7.1 Hypothesis 1 (Catalyst-HypoRefine with Variable Weights) 356 15.4.7.2 Hypothesis 2 (Catalyst-HypoRefine with Variable Weights and Tolerances) 357 15.4.7.3 Comparison of the Two Retained Hypotheses 358 15.4.8 Further Validation: Virtual Screening of the CAP Database 360 15.5 Conclusion 361 Acknowledgments 362 References 362

Subject Index 365