ABSORPTION AND DRUG DEVELOPMENT

Solubility, Permeability, and Charge State

Second Edition

ALEX AVDEEF in-ADME Research

CONTENTS

Preface Preface to the First Edition List of Abbreviations Nomenclature Commercial Trademarks		xxiii xxvii xxxi xxxi xxxv xli				
			1	Intr	oduction	1
				1.1	Bulldozer Searching for a Needle in the Haystack?, 1	
				1.2	As the Paradigm Turns, 4	
				1.3	Screen for the Target or ADME First?, 5	
	1.4	ADME and Multimechanism Screens, 6				
	1.5	ADME and the Medicinal Chemist, 7				
	1.6	The "Absorption" in ADME, 8				
	1.7	It Is Not Just a Number, It Is a Multimechanism, 9				
	Ref	erences, 9				
2	Transport Model		12			
	2.1	Permeability–Solubility–Charge State and pH-Partition Hypothesis, 12				
	2.2	Properties of the Gastrointestinal Tract (GIT), 17				
	2.3	pH Microclimate, 22				

2.4 Intracellular pH Environment, 23

- 2.5 Tight Junction Complex, 23
- 2.6 Structure of Octanol, 23
- 2.7 Biopharmaceutics Classification System, 25

References, 26

3 pK_a Determination

- 3.1 Charge State and the pK_a , 32
- 3.2 Methods of Choice for the Determination of the pK_a , 34
- 3.3 Titration with a Glass-Membrane pH Electrode, 34
- 3.4 Equilibrium Equations and the Ionization Constant, 38
- 3.5 "Pure Solvent" Activity Scale, 41
- 3.6 Ionic Strength and Debye-Hückel/Davies Equation, 41
- 3.7 "Constant Ionic Medium" Activity Scale, 43
 - 3.7.1 Constant Ionic Medium Activity Scale, $f'_{\rm X}$, 44
 - 3.7.2 Example of the Constant Ionic Medium Activity Scale Treatment, 44
- 3.8 Temperature Dependence of pK_a Values, 47
 - 3.8.1 Thermodynamics of Temperature Dependence of pK_a , 48
 - 3.8.2 Predicting pK_a at 37°C from Measured Values at 25°C, 52
- 3.9 Electrode Calibration and Standardization, 55
 - 3.9.1 Overview: From Millivolts to pH to pcH, 56
 - 3.9.2 One-Buffer Operational Calibration of Electrode and Automatic Temperature Compensation, 56
 - 3.9.3 Four-Parameter Procedure for Standardizing pH Electrode: α , k_s , j_H , j_{OH} Parameters, 60
 - 3.9.3.1 Blank Titration, 61
 - 3.9.3.2 Buffer-Capacity Enhanced Standardization Titrations, 63
 - 3.9.4 Blank Titrations Assess the State of the Measurement System, 63
 - 3.9.5 Frequency of Electrode Standardizations, 64
 - 3.9.6 Effects of Ionic Strength on α , k_s , j_H , j_{OH} , 64
 - 3.9.7 Effects of Temperature on α , k_s , j_H , j_{OH} , 64
- 3.10 Bjerrum Plot: Most Useful Graphical Tool in pKa Analysis, 66
 - 3.10.1 Derivation of the Bjerrum Function, 66
 - 3.10.2 Diagnostic Uses of the Bjerrum Plots, 69
 - 3.10.2.1 Confirming the Number of pK_a and the Value of $n_{\rm H}$, 69
 - 3.10.2.2 Correcting Residual Acidity/Basicity Error, 69
 - 3.10.2.3 Correcting Sample Concentration Error, 71
 - 3.10.2.4 Recognizing Electrode Calibration Errors, 71
 - 3.10.2.5 Errors in Titrant Concentration, 71
 - 3.10.2.6 Consequences of Errors in Ionic Strength, 72
 - 3.10.2.7 Evidence of Precipitation, 72

- 3.10.2.8 pK_a "Ghosts", 72
- 3.10.2.9 Overlapping pK_a Values, 73
- 3.10.3 More Than One Substance: Subtracting Effects of Dissolved Carbon Dioxide, 73
- 3.10.4 Case Examples, 75
- 3.10.5 Bjerrum's Lasting Contribution, 75
- 3.11 Cosolvent Methods for pK_a Determination of Practically Insoluble Substances, 78
 - 3.11.1 Traditional Cosolvent Extrapolation Procedure: p_sK_a versus wt% Cosolvent, 79
 - 3.11.2 Yasuda–Shedlovsky Cosolvent Extrapolation Procedure: $p_s K_a + \log[H_2O]$ versus 1/ ϵ , 83
 - 3.11.3 Which Method Is Better to Use: Traditional or Yasuda–Shedlovsky?, 86
 - 3.11.4 Precipitation in Mixed-Solvent Titration, 87
 - 3.11.5 Electrode Standardization in Mixed Solvents, 88
 - 3.11.6 Yasuda-Shedlovsky Ancillary Data, 91
 - 3.11.7 Recommended $p_s K_a$ Titration Protocol, 92
 - 3.11.8 Use of Cosolvents for Water-Soluble Molecules, 93
- 3.12 Other Methods for pK_a Measurement, 96
 - 3.12.1 Spectrophotometric Measurements, 96
 - 3.12.2 Capillary Electrophoresis (CE) Measurements, 99
 - 3.12.3 Chromatographic pK_a Measurement, 100
 - 3.12.4 pK_a Measurement by PAMPA (Parallel Artificial Membrane Permeability Assay), 100
 - 3.12.5 pK_a Determination from Shake-Flask log D_{OCT} versus pH Profiles, 101
 - 3.12.6 Comparison of Methods, 101
- 3.13 p K_a Microconstants, 102
- 3.14 p K_a Compilations, 107
- 3.15 pK_a Prediction Programs, 107
- 3.16 Database of pK_a (25°C and 37°C), 107
- Appendix 3.1 Quick Start: Determination of the pK_a of Codeine, 127 A3.1.1 Data Collection, 127
 - A3.1.2 Data Processing, 128
- Appendix 3.2 Tutorial for Measurements with Glass-Membrane pH Electrode, 130
 - A3.2.1 The pH Electrode Is an Electrochemical Sensor, 131
 - A3.2.2 Calibration of Glass-Membrane pH Electrodes Requires Standard Buffers, 132
 - A3.2.3 Sources of Error in the Most Accurate pH Determinations, 133
 - A3.2.4 Interlaboratory Comparison of pH Measurement Using Glass-Membrane pH Electrodes, 133
 - A3.2.5 Three pH Scales in Use, 134

Appendix 3.3 pH Convention Adopted by IUPAC and Supported by NIST, 137

Appendix 3.4 Liquid-Junction Potentials (LJP), 140

- A3.4.2 Constant but Small LJP with Constant Ionic Medium Cell (Practical Case), 143
- A3.4.3 Largest LJP Errors with Zero Ionic Strength Media (Worst Case), 144
- A3.4.4 Summary, 145
- Appendix 3.5 pK_a Refinement by Weighted Nonlinear Regression, 146
 - A3.5.1 Function Minimized in the Weighted Nonlinear Regression Analysis, 146
 - A3.5.2 Overview of the Refinement Procedure, 146
 - A3.5.3 Weighting Scheme and Goodness-of-Fit (GOF), 147
 - A3.5.4 Mass Balance Equations and "Local" Refinement, 148 A3.5.4.1 Sample Calculation of the Initial Point Prior to Titrant Addition, 150
 - A3.5.4.2 Sample Calculation of the Titration Curve after Volume of Titrant Addition, 150
 - A3.5.4.3 Jacobian Method in "Local" Refinement, 152
 - A3.5.5 Normal Equations and "Global" Refinement, 154
 - A3.5.6 Automatic Ionic Strength Compensation, 155
 - A3.5.7 Reactant and Titrant Concentration Factor Refinement, 156
 - A3.5.8 Multisubstance Refinement, 157
 - A3.5.9 In situ Standardization of the pH Electrode, 157

Appendix 3.6 Molality to Molarity Conversion, 157 References, 158

4 Octanol-Water Partitioning

- 4.1 Overton-Hansch Model, 175
- 4.2 Tetrad of Equilibria, 175
- 4.3 Conditional Constants, 177
- 4.4 log P Data Sources, 178
- 4.5 log D Lipophilicity Profile, 178
- 4.6 Ion-Pair Partitioning, 183
 - 4.6.1 Partitioning of Quaternary Ammonium Drugs, 183
 - 4.6.2 Common-Ion Effect and $\log D$ of Multiprotic Drugs, 183
 - 4.6.3 Summary of Charged-Species Partitioning in Octanol-Water, 186
 - 4.6.4 Ion-Pair Absorption of Ionized Drugs: Fact or Fiction?, 187

A3.4.1 LJP Minimized with Equi-ionic Cell Design (Best Case, but Inconvenient), 142

- 4.7 Micro-log *P*, 187
- 4.8 Methods for log P Determination, 188
 - 4.8.1 HPLC Methods, 188
 - 4.8.2 High-Throughput Methods, 188
 - 4.8.3 Other log *P* Methods, 188
- 4.9 Dyrssen Dual-Phase Titration log P Method, 189
 - 4.9.1 Brief History of the Dual-Phase Titration Method, 189
 - 4.9.2 Dual-Phase Method, 190
 - 4.9.3 Dual-Phase Bjerrum Plots, 190
 - 4.9.3.1 Monoprotic Molecules, 190
 - 4.9.3.2 Multiprotic Molecules, 191
 - 4.9.4 Validation, 194
- 4.10 Ionic Strength Dependence of $\log P$, 194
- 4.11 Temperature Dependence of $\log P$, 194
- 4.12 Calculated versus Measured $\log P$ of Research Compounds, 194
- 4.13 log D versus pH Case Study: Procaine Structural Analogs, 196
- 4.14 Database of Octanol–Water $\log P^N$, $\log P^I$, and $\log D_{7.4}$, 201

References, 209

5 Liposome–Water Partitioning

- 5.1 Biomimetic Lipophilicity, 221
- 5.2 Tetrad of Equilibria and Surface Ion-Pairing (SIP), 221
- 5.3 Data Sources, 222
- 5.4 Location of Drugs Partitioned into Bilayers, 222
- 5.5 Thermodynamics of Partitioning: Entropy- or Enthalpy-Driven?, 223
- 5.6 Electrostatic and Hydrogen Bonding in a Low Dielectric Medium, 224
- 5.7 Water Wires, H⁺/OH⁻ Currents, and Permeability of Amino Acids and Peptides, 227
- 5.8 Preparation Methods: MLV, SUV, FAT, LUV, ET, 228
- 5.9 Experimental Methods, 229
- 5.10 Prediction of $\log P_{\text{MEM}}$ from $\log P_{\text{OCT}}$, 229
- 5.11 log D_{MEM} , diff log P_{MEM} , and Prediction of log $P_{\text{MEM}}^{\text{SIP}}$ from log $P_{\text{OCT}}^{\text{I}}$, 233
- 5.12 Three Indices of Lipophilicity: Liposomes, IAM, and Octanol, 238
- 5.13 Getting It Wrong from One-Point $\log D_{\text{MEM}}$ Measurement, 239
- 5.14 Partitioning into Charged Liposomes, 240
- 5.15 p K_a^{MEM} Shifts in Charged Liposomes and Micelles, 240
- 5.16 Prediction of Absorption from Liposome Partition Studies?, 241
- 5.17 Database of $\log P_{\text{MEM}}$ and $\log P_{\text{MEM}}^{\text{SIP}}$, 242

References, 245

6 Solubility

- 6.1 It's Not Just a Number, 252
- 6.2 Why Is Solubility Measurement Difficult?, 252
 - 6.2.1 Poor Wettability, 253
 - 6.2.2 Formation of Aggregates and Micelles, 253
 - 6.2.3 Equilibration Time and Metastable Gel States, 254
 - 6.2.4 Polymorphism and Amorphous States, 254
- 6.3 Mathematical Models for Solubility-pH Profiles, 255
 - 6.3.1 Monoprotic Weak Acid, HA (or Base, B), 255
 - 6.3.2 Diprotic Ampholyte, XH⁺₂, 256
 - 6.3.3 Gibbs pK_a ("pH^{max}") and the Tetrad of Equilibria, 257
 - 6.3.4 Aggregation Reactions in Solubility Measurement, 262
 - 6.3.4.1 Sample Derivation of Ionic Aggregation of a Weak Acid, 265
 - 6.3.4.2 Solubility Equations for Other Cases Involving Aggregation Reactions, 265
 - 6.3.5 Complexation Reactions in Solubility Measurement (Phase-Solubility Method), 265
 - 6.3.5.1 Simple 1:1 Complexation, 265
 - 6.3.5.2 Simple 2:1 Ligand–Drug Complexation, 267
 - 6.3.5.3 Simple 1:1 Complexation with Deprotonation of the Complex, 267
 - 6.3.5.4 Summary of Complexation Equations, 269
 - 6.3.6 Micellar Binding Reactions in Solubility Measurement, 269
- 6.4 Experimental Methods, 270
 - 6.4.1 Saturation Shake-Flask ("Gold Standard" SSF Method), 270
 - 6.4.2 Turbidimetric (DMSO-Containing "Kinetic" Ranking Methods), 270
 - 6.4.3 Micro-Dissolution for Solubility Measurement (DMSO-Free μDISS Method), 271
 - 6.4.4 DMSO-Containing Thermodynamic 96- and 384-Well Plate Methods, 272
 - 6.4.4.1 HTS Methods, 272
 - 6.4.4.2 Self-Calibrating Microsolubility (≤1% v/v DMSO-μSOL Method), 272
 - 6.4.5 DMSO-Free Thermodynamic 96- and 384-Well Plate Methods, 277
 - 6.4.5.1 Lyophilization (GeneVac), 277
 - 6.4.5.2 Partially Automated Solubility Screening (PASS), 277
 - 6.4.5.3 Miniaturized Shake-Flask (MSF), 277
 - 6.4.5.4 Dual-Phase Potentiometric Titration (DTT), 278

- 6.4.6 Facilitated Dissolution Method (FDM), 283
- 6.4.7 Can Solubility Depend on the Amount of Excess Solid?, 285
- 6.4.8 Excipient and Solubilizing Agent Screening, 285
- 6.4.9 Need for Accurate pK_a Determinations, 287
- 6.5 Correction for the DMSO Effect by the "Δ-Shift" Method, 287
 - 6.5.1 DMSO Binding to the Uncharged Form of a Compound, 287
 - 6.5.2 Ionizable Compound Binding by Nonionizable Excipients, 288
 - 6.5.3 Results of Aqueous Solubility Determined from the Δ -Shifts, 289
- 6.6 Case Studies (Solubility-pH Profiles), 289
 - 6.6.1 Carboxylic Weak Acids, 289
 - 6.6.1.1 Diclofenac, 289
 - 6.6.1.2 Gemfibrozil, 291
 - 6.6.1.3 Ibuprofen, 291
 - 6.6.1.4 Ketoprofen, 291
 - 6.6.1.5 Mefenamic Acid, 292
 - 6.6.1.6 Naproxen, 292
 - 6.6.1.7 Prostaglandin $F_{2\alpha}$, 292
 - 6.6.2 Noncarboxylic Weak Acids, 292
 - 6.6.2.1 Glibenclamide, 292
 - 6.6.2.2 Phenytoin, 294
 - 6.6.3 Weak Bases, 294
 - 6.6.3.1 Dipyridamole, 295
 - 6.6.3.2 Papaverine, 296
 - 6.6.3.3 Terfenadine, 296
 - 6.6.4 High-Throughput Excipient/Solubilizer Screening, 297
 - 6.6.4.1 Excipient/Solubilizer Concentrations, 297
 - 6.6.4.2 Excipient/Solubilizer Solubility Profiles, 297
 - 6.6.4.3 Drug Effects, 301
 - 6.6.4.4 Summary, 301
 - 6.6.5 Additional Case Studies of Excipient/Solubilizer Effects on Solubility of Sparingly Soluble Drugs, 302
 - 6.6.5.1 Ketoprofen with Sodium Lauryl Sulfate (SLS), 302
 - 6.6.5.2 Mefenamic Acid and Hydroxypropyl-β-Cyclodextrin (HP-β-CD), 302
 - 6.6.5.3 Mefenamic Acid and Sodium Taurocholate (NaTC), 304
 - 6.6.6 Salt Solubility: Amount of Excess Solid Can Determine Solubility, 306
 - 6.6.6.1 Chlordiazepoxide, 306
 - 6.6.6.2 Flurbiprofen, 306
 - 6.6.6.3 Terfenadine, 306

- 6.7 Limits of Detection—Precision versus Accuracy, 306
- 6.8 Data Sources and the "Ionizable-Drug Problem," 308
- 6.9 Database of $\log S_0$, 308
- References, 310

7 Permeability—PAMPA

- 7.1 Permeability in the Gastrointestinal Tract, 320
- 7.2 Historical Developments in Permeability Models, 323
 - 7.2.1 Lipid Bilayer Concept, 323
 - 7.2.2 Black Lipid Membranes (BLM), 326
 - 7.2.3 Microfilter as Supports, 327
 - 7.2.4 Octanol-Impregnated Filters with Controlled Water Pores, 332
 - 7.2.5 Relationship Between Permeability and Partition Coefficients, 333
- 7.3 Rise of PAMPA—A Useful Tool in Early Drug Discovery, 336
 - 7.3.1 The Original Egg Lecithin Model: PAMPA-EGG, 336
 - 7.3.2 Dioleyoylphosphatidylcholine Model: PAMPA-DOPC, 336
 - 7.3.3 Hexadecane Model: PAMPA-HDM, 338
 - 7.3.4 Biomimetic Model: PAMPA-BM, 339
 - 7.3.5 Hydrophilic Filter Membrane Model: PAMPA-HFM, 341
 - 7.3.6 Double-Sink PAMPA Model: PAMPA-DS, 342
- 7.4 PAMPA-HDM, -DOPC, -DS Models Compared, 343
 - 7.4.1 In Combo Approach for Relating PAMPA Models, Using Abraham Descriptors, 344
 - 7.4.2 Intrinsic Permeability of the Test Compounds by the pK_a^{FLUX} Method, 349
 - 7.4.3 DS > DOPC > HDM Permeability Ranking, 347
 - 7.4.4 Abraham Analysis of PAMPA-HDM, -DOPC, and -DS Models, 347
 - 7.4.5 In Combo Analysis of the Differences Between the Three PAMPA Models, 349
 - 7.4.6 Practical Considerations in Using HDM and DS Models, 351
- 7.5 Modeling Biological Membranes, 354
 - 7.5.1 Lipid Compositions in Biological Membranes, 354
 - 7.5.2 Permeability-pH Considerations, 356
 - 7.5.3 Membrane Retention (Iso-pH without Chemical Sink), 357
 - 7.5.4 Role of Serum Proteins, 359
 - 7.5.5 Effects of Cosolvents, Bile Acids, and Other Surfactants, 360
 - 7.5.6 Ideal Model, 361

- 7.6 Permeability-pH Relationship and the Mitigating Effect of the Aqueous Boundary Layer, 362
 - 7.6.1 Permeability-pH (Iso-pH DOPC Model), 362
 - 7.6.2 Permeability-pH (Gradient-pH Double-Sink Model), 365
 - 7.6.3 Stirring with Orbital Shakers, 365
 - 7.6.4 Individual-Well Stirring, 368
 - 7.6.5 Relationship Between Membrane and ABL Permeability, 368
 - 7.6.6 pH-Dependence of Permeability: Correcting PAMPA Permeability for the ABL and Charge Effects by the pK_a^{FLUX} Method, 370
 - 7.6.6.1 Membrane-Limiting Permeation (Hydrophilic Molecules), 374
 - 7.6.6.2 ABL-Limiting Permeation (Lipophilic Molecules): pK_a^{FLUX} Method, 374
 - 7.6.6.3 Analysis of Stirring Effects Using the pK_a^{FLUX} Method, 376
 - 7.6.7 ABL Hydrodynamic Model Commonly Used in Cellular Studies, 376
 - 7.6.8 Thickness of the ABL, 381
 - 7.6.9 Why Is the Empirical Hydrodynamic Model α-Factor Not Equal to 0.5?, 382
 - 7.6.10 Determining P_0 of Nonionizable Molecules or in Membrane-Limited Permeation, 384
 - 7.6.11 Determination of ABL Permeability from Permeability of Lipid-Free Microfilters, 385
 - 7.6.12 Estimation of h_{ABL} from pH Measurements Near the Surface of Membranes, 385
 - 7.6.13 Errors in the Determination of P_0 by the p K_a^{FLUX} Method, 386
- 7.7 pK_a^{FLUX} -Optimized Design (pOD), 386
- 7.8 Cosolvent PAMPA, 389
 - 7.8.1 pK_a^{FLUX} Method in Cosolvent Media, 390
 - 7.8.2 Acid-Base In Combo Permeability Model, 396
 - 7.8.3 Cosolvent Extrapolation Method, 397
- 7.9 UV versus LC/MS Detection, 397
 - 7.9.1 UV Data, 398
 - 7.9.2 LC/MS Data, 398
- 7.10 Assay Time Points, 400
- 7.11 Buffer Effects, 402
- 7.12 Apparent Filter Porosity, 404
 - 7.12.1 Apparent Porosity, 404
 - 7.12.2 Apparent Porosity in PAMPA-DS and PAMPA-HDM, 406
 - 7.12.3 Recalculation Using the Apparent Porosity, 407

- 7.13 PAMPA Errors: Intra-Plate and Inter-Plate Reproducibility, 407
- 7.14 Human Intestinal Absorption (HIA) and PAMPA, 409
 - 7.14.1 Max-PAMPA Binning Methods, 409
 - 7.14.2 Sum-PAMPA Binning Methods, 410
 - 7.14.3 *Human* Jejunal Permeability to Predict Human Intestinal Absorption, 412
 - 7.14.4 MAD-PAMPA Method Integrating Solubility and Permeability, 413
- 7.15 Permeation of Permanently Charged Molecules, 416
 - 7.15.1 Charged-Species Transport from Cellular and Liposomal Models, 417
 - 7.15.2 The PAMPA Evidence for the Permeation of Charged Drugs, 421
- 7.16 Permeation of Zwitterions/Ampholytes—In Combo PAMPA, 424
 - 7.16.1 An *In Combo* PAMPA Model Incorporating Paracellular Contribution, 426
 - 7.16.1.1 Paracellular Permeability Analysis (Pore Radius, Porosity–Pathlength, Electric Potential Gradient), 426
 - 7.16.1.2 Zwitterion/Neutral Intrinsic Permeability, 428
 - 7.16.1.3 Absorption Prediction with *In Combo* PAMPA, 430
 - 7.16.2 Absorption Curve as a Function of P_e^{INT} , 430
- 7.17 PAMPA in Formulation: Solubilizing Excipient Effects, 433
 - 7.17.1 In Vivo Absorption as a Function of pH, 436
 - 7.17.2 Nonlinear Weighted Regression Reanalysis of Rat Absorption-pH Curves, 437
 - 7.17.3 Solubility and Permeability in Flux, 439
 - 7.17.4 Absorption-Excipient-pH Classification Gradient Map, a Flux Function, 440
 - 7.17.5 The Conversion of Intrinsic Data to Intestinal pH 5.0, 6.2, and 7.4 Conditions, 440
 - 7.17.6 Absorption and the Underlying Permeability and Solubility, 442
 - 7.17.6.1 PAMPA-Excipient-pH CGM, 442
 - 7.17.6.2 Solubility-Excipient-pH CGM, 442
 - 7.17.6.3 Solubility-Product "Salt Ceiling," 442
 - 7.17.7 Absorption-Excipient-pH CGM, 443
 - 7.17.8 HP-β-CD Effects, 444
 - 7.17.9 pH-Partition Hypothesis "Inversion," 446
 - 7.17.10 Comparisons with Drug-Cyclodextrin In Vivo Bioavailability Data, 448
- 7.18 Database of Double-Sink PAMPA $\log P_0$, $\log P_m^{6.5}$, and $\log P_m^{7.4}$, 448

- Appendix 7.1 Quick Start: Double-Sink PAMPA of Metoprolol, 460
 - A7.1.1 Optimizing Assay Protocol, 461
 - A7.1.2 PAMPA-DS (Gradient-pH) Assay, 461
 - A7.1.3 Data Processing, 463
- Appendix 7.2 Permeability Equations, 465
 - A7.2.1 Thin-Membrane Model (without Retention), 467
 - A7.2.2 Iso-pH Equations with Membrane Retention, 470
 - A7.2.2.1 Without Precipitate in Donor Wells and Sink Condition in Receiver Wells, 470
 - A7.2.2.2 Sink Condition in Receiver Wells, 474
 - A7.2.2.3 Precipitated Sample in the Donor Wells, 475
 - A7.2.3 Gradient-pH Equations with Membrane Retention, 476
 - A7.2.3.1 Single-Sink: Eq. (A7.28), in Absence of Chemical Sink (Serum Protein or Surfactant in Receiver Wells), 478
 - A7.2.3.2 Double-Sink: Eq. (A7.28), in the Presence of Chemical Sink (Serum Protein or Surfactant in Receiver Wells), 479
 - A7.2.3.3 Simulation Examples, 480
 - A7.2.3.4 Gradient-pH Summary, 481
- Appendix 7.3 PAMPA Paramembrane Water Channels, 481
 - A7.3.1 PAMPA Permeability Equation Taking into Account Paramembrane Contribution, 482
 - A7.3.2 PAMPA Determinations, 482
 - A7.3.3 Water Pores in PAMPA Membrane Barrier, 484

References, 484

8 Permeability: Caco-2/MDCK

- 8.1 Permeability in the Gastrointestinal Tract, 500
 - 8.1.1 Human Jejunal Permeability, 500
 - 8.1.2 Environment of the GIT Site of Absorption, 501
 - 8.1.2.1 Intestinal Surface Accessibility and the "Smooth Tube" Approximation, 502
 - 8.1.2.2 Aqueous Boundary Layer (ABL), 502
 - 8.1.2.3 Paracellular Aqueous Channels, 503
 - 8.1.2.4 pH Gradients, 504
 - 8.1.2.5 Normalizing In Vitro-In Vivo Conditions, 504
 - 8.1.3 Carrier-Mediated Transporters and PAMPA, 504
- 8.2 Cell-Based In Vitro Permeability Model, 505
 - 8.2.1 Limitations of a Single-pH Measurement and Ways to Overcome Them, 506
 - 8.2.1.1 ABL-Limited Transport May Not Correlate with In Vivo Permeability, 506

- 8.2.1.2 Paracellular Transport May Be Important for Low-Permeable Molecules, 509
- 8.2.1.3 How to Extract P_c from P_{app} in a Single-pH Permeability Measurement, 509
- 8.2.1.4 How to Extract P_C from P_{app} from Multiple-pH Permeability Measurement, 510
- 8.2.2 Characteristic Paracellular Parameters in a Standardized Cell Culture, 510
 - 8.2.2.1 Model Equation to Determine Cell-Based In Vitro Paracellular Parameters, 510
 - 8.2.2.2 Refinement of the *In Vitro* Paracellular Permeability Parameters, 513
- 8.3 In Situ Human Jejunum Permeability (HJP) Model, 514
 - 8.3.1 Model Equation to Determine HJP Paracellular Parameters, 514
 - 8.3.2 Refinement of the HJP Parameters, 515
- 8.4 Passive Intrinsic Permeability Coefficients of Caco-2 and MDCK Compared, 515
- 8.5 Theory (Stage 1): Paracellular Leakiness and Size Exclusion in Caco-2, MDCK, and 2/4/A1 Cell Lines, 516
 - 8.5.1 Selection of Paracellular Markers, 517
 - 8.5.2 Paracellular Model Nonlinear Regression Analysis, 517
 - 8.5.3 Iso-Paracellular Profiles, 519
 - 8.5.4 Ranking by Size Exclusion, 522
 - 8.5.5 Confirming the Filter Porosity Experimentally, 522 8.5.5.1 Filter Permeability, P_f , in Caco-2 Assays, 522 8.5.5.2 Determination of Filter Permeitur 522
 - 8.5.5.2 Determination of Filter Porosity, 523
- 8.6 Theory (Stage 2): Regression Method for *In Vitro* Cellular Permeability, 524
 - 8.6.1 Two Stages of Analysis and the Dynamic Range Window (DRW), 524
 - 8.6.2 Refinement of the *In Vitro* Cellular Permeability Parameters, 525
- 8.7 Case Studies of Cell-Based Permeability as a Function of pH, 525
 - 8.7.1 In Vitro Permeability Measurements Are Insufficiently Standardized, 525
 - 8.7.2 Pretreatment of *In Vitro* Permeability Measurements to Improve IVIVC, 526
 - 8.7.2.1 Treatment of the Two-pH Caco-2 Data to Determine "True" Cell Permeability, 526
 - 8.7.2.2 Treatment of the Multiple-pH Caco-2 Data to Determine "True" Cell Permeability, 528 8.7.2.2.1 Alfentanil, 528
 - 8.7.2.2.2 Cimetidine, 529
 - 8.7.2.2.3 Verapamil, 529

8.7.2.2.4 Atenolol, Metoprolol, and Propranolol, 530

- 8.7.2.2.5 Indomethacin and Retinoic Acid, 532
- 8.8 Human Jejunal Permeability Predicted Directly from Caco-2/ MDCK, 533
 - 8.8.1 Effective Human Jejunal Permeability Data Sources, 533
 - 8.8.2 Biophysical Model Regression Analysis of Human Jejunal Permeability, 534
 - 8.8.3 Refined Effective Surface Area Expansion Factor, 534
 - 8.8.4 Transport Analysis for Drugs in the Human Jejunum, 541
 - 8.8.4.1 Paracellular Route, 542
 - 8.8.4.2 ABL-Limited Transcellular Route, 544
 - 8.8.4.3 Transcellular Route, 545
 - 8.8.5 Polyethylene Glycol Permeability, 545
 - 8.8.6 The "Leakiness" of the Human Jejunum Compared with That of *In Vitro* Models, 548
 - 8.8.7 Applications of the Biophysical Model, 548
 - 8.8.8 Biophysical Model Summary, 550
- 8.9 Caco-2/MDCK Database and Its *In Combo* PAMPA Prediction, 550
 - 8.9.1 Caco-2/MDCK Database, 551
 - 8.9.2 In Combo Model Building Approach, 561
 - 8.9.3 Caco-2/MDCK Passive Permeability Prediction Model, 561

References, 563

9 Permeability: Blood–Brain Barrier

- 9.1 The Blood–Brain Barrier: A Key Element for Drug Access to the Central Nervous System, 576
- 9.2 The Blood-Brain Barrier, 576
 - 9.2.1 The BBB Environment, 577
 - 9.2.2 Lipid Composition of the BBB, 578
 - 9.2.3 Transporters at the BBB, 578
- 9.3 Noncellular BBB Models, 580
 - 9.3.1 $\log P_{\text{OCT}}$, 580
 - 9.3.2 $\Delta \log P$, 581
 - 9.3.3 Air–Water Partition Coefficients and Molecular Cross-Sectional Area, 582
 - 9.3.4 Black Lipid Membrane (BLM) Models, 583
 - 9.3.5 PAMPA-BBB, 583
 - 9.3.6 Selectivity Coefficients (SC) and the Solubility-Diffusion Theory, 584
- 9.4 In Vitro BBB Cell-Based Models, 586

- 9.5 In Vivo BBB Models, 589
 - 9.5.1 Brain/Plasma Ratio: K_p (also Known as B/P and log BB)— Extent of Penetration, 589
 - 9.5.2 Mouse Brain Uptake Assay (MBUA), 589
 - 9.5.3 Rodent In Situ Brain Perfusion: Rate of Transport, 590
 - 9.5.4 Microdialysis, 592
- 9.6 Paradigm Shift, 592
 - 9.6.1 Extent of Brain Penetration (Concentration in the Brain Extracellular Fluid ECF), 592
 - 9.6.2 Equilibration Half-Time in Physiologically Based Pharmacokinetics (PBPK), 603
 - 9.6.3 Unbound Fractions in Brain and Plasma, 603
 - 9.6.4 Brain Penetration Classification (BPC), 604
- 9.7 In Silico BBB Models, 608
- 9.8 Biophysical Analysis of In Vitro Endothelial Cell Models, 608
 - 9.8.1 Computational Method, 608
 - 9.8.2 Selection of *In Vitro* BMEC Permeability Data from Various Laboratories, 609
 - 9.8.3 Extracting Aqueous Hydrodynamic Contributions from Measured Permeability, 610
 - 9.8.4 In Vitro BMEC Transendothelial and Intrinsic Permeability, P_c and P_0 , 610
 - 9.8.5 Dynamic Range Window (DRW), 610
 - 9.8.6 Results of Paracellular and Aqueous Boundary Layer Permeability Analysis, 612
 - 9.8.6.1 Transporter Effects, 614
 - 9.8.6.2 Refined Paracellular Parameters, 614
 - 9.8.6.3 Ranking by Leakiness, 615
 - 9.8.6.4 Size Exclusion, 616
 - 9.8.7 Transendothelial Cell Membrane Permeability Analysis, 616
 - 9.8.7.1 IVIVC Analysis with Uncorrected (P_e) Data, 616
 - 9.8.7.2 Improved IVIVC Analysis Using P_0 Data, 618
- 9.9 In Situ Brain Perfusion Analysis of Flow, 618
 - 9.9.1 Flow-Limit Window (FLW), Where PS Cannot Be Determined from K_{in}, 618
 - 9.9.2 Approaches to Overcome the Possible Limitation of the Crone–Renkin Equation, 619
 - 9.9.3 Is There an ABL at the BBB?, 620
 - 9.9.4 The pH-CRE (Crone–Renkin Equation) Flow Correction Method, 621
 - 9.9.5 Paracellular Permeability at the BBB, 623
 - 9.9.6 Capillary versus Planar Hydrodynamic Effects in Permeability Assays, 623
 - 9.9.7 Effective BBB Permeability versus Lipophilicity, 625

- 9.9.8 In Situ Rat Brain Perfusion Measurement as a Function of pH, 627
- 9.9.9 Determined Mean Cerebrovascular Flow Velocity: Literature Comparisons, 631
- 9.9.10 pH-CRE Method Recommendations: Maprotiline at pH 7.4 and 6.5, 631

9.10 In Combo PAMPA–BBB Model for Passive BBB Permeability, 631

- 9.10.1 In Silico Model Building Software and the In Combo Strategy, 632
- 9.10.2 Linear Free Energy Relations (LFER) Descriptors, 658
- 9.10.3 PAMPA-BBB Selectivity Coefficients by Charge Classes, 659
- 9.10.4 Abraham LFER and In Combo PAMPA Models, 659
- 9.10.5 "External" Set Comparisons, 662

References, 663

10 Summary and Some Simple Approximations

Index

685