3316. 76.3

Untersuchungen zur Redispergierbarkeit pharmazeutischer Suspensionen und zur Gleichförmigkeit der Dosierung

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität

Bonn

vorgelegt von

MATTHIAS SCHWERDTFEGER

aus Ludwigshafen am Rhein

A.EINFÜ	EINFÜHRUNG			
1.	EINLEITUNG	1		
<u>2.</u>	ZIELSETZUNG	7		
3.	LITERATURÜBERSICHT	8		
B.THEORETISCHER TEIL				
<u>1.</u>	Suspensionen	11		
	1.1. Einleitung	11		
	1.2. Applikation pharmazeutischer Suspensionen	13		
	1.2.1. Gebrauchsfertige Suspensionen	13		
	1.2.2. Suspension zur Rekonstitution	14		
	1.2.3. Suspensionen im Arzneibuchs	15		
	1.2.4. Anforderungen an Suspensionen	16		
	1.3. Chemische Stabilität	18		
	1.4. Physikalische Stabilität disperser Systeme			
	1.4.1. DLVO-Theorie			
	1.4.2, Zetapotential	23		
	1.4.3. Partikelagoregation	24		
	1.4.4. Sedimentationsyerhalten	25		
	1.4.5. Sedimenttypen	27		
	1.4.6. Sterische Stabilisierung	28		
	1,4.7. Partikelgrößenwachstum	29		
	1.4.8. Grenzflächenspannung			
	1.5. Formulierung von Suspensionen	32		
	1.5.1. Netzmittel	32		
	1.5.2. Flockungsmittel	33		
	1,5,3. Viskositätserhöhende Zusätze	35		
	1,5.4. Weitere Hilfsstoffe	37		
	1,5.5. Partikeloroße	38		
	1.5.6. Partikefform	38		
	1.6. Suspensionen zur Rekonstitution	39		
2.	MATHEMATISCHE BESCHREIBUNG DER SCHÜTTELVORGÄNGE	1		
	2.1. Einleitung	41		

		<u>2.2.</u>	Zeitreinenanaiyse	44
			2.2.1. Zeitreihe	44
			2.2.2. Diskretisierung von Zeitreihen	45
			2.2.3. Korrelation	46
			2.2.4. Kovarianz	46
			2.2.5. Korrelations- und Kovarianzfunktion	47
		<u>2.3.</u>	Fourieranalyse	49
			2.3.1. Fourierreihe	49
			2.3.2. Fourierintegral	52
			2.3.3. Faltungsintegral	52
			2.3.4. Diskrete Fourier-Transformation (DFT) und Abtasttheorem	53
			2.3.5. Schnelle Fourier-Transformation (FFT)	54
			2.3.6. Laplace-Transformation	55
		2.4.	Energie und Leistung schwingender Systeme	<u>56</u>
			2.4.1. Betrachtung im Zeitbereich	56
			2.4.2. Energie- und Leistungsdichtespektrum	<u>56</u>
			2.4.3. Periodogramm-Methode	58
			2.4.4. Erwartungstreue und Konsistenz des Periodogramms	<u>58</u>
		2.5.	Schwingungen	<u>60</u>
			2.5.1. Allgemeine Betrachtung harmonisch schwingender Systeme	60
			2.5.2. Die harmonische Schwingung	<u>61</u>
			2.5.3. Wegberechnung aus Beschleunigungswerten	63
			2.5.4. Die Schüttelbewegung im Gravitationsfeld der Erde	64
			2.5.5. Getriebene harmonische Oszillation der Schüttelbewegung	65
C.GE	RÄT	E UND	MATERIALIEN	69
				69
	1	-	UTERGESTEUERTE SCHÜTTELMASCHINE	<u>05</u> 69
			Einleitung Aufbau der computerrecteuerten Schüttelmeschine	
		<u>1.6.</u>	Aufbau der computergesteuerten Schüttelmaschine	
			1.2.1. DA / AD- Wandler	
			1.2.2. Gleichstromverstärker	<u> 72</u> 72
			1.2.3. Gleichstrommotor	<i>12</i> 73
			1.2.4. Schüttelmodul	

	1.3.	Funktionsweise der computergesteuerten Schüttelmaschine	74
		1.3.1. Funktionsprinzip	74
		1.3.2. Steuerdatei	75
	<u>1.4.</u>	Kalibrierung	77
		1.4.1. Ausgangsspannung des DA/AD- Wandlers	77
		1.4.2. Tachometer	<u>78</u>
		1.4.3. Geschwindigkeitsbestimmung	78
	1.5.	Vorhersage der Bewegung des Laufwagens	82
		1.5.1. Frequenz	82
		1.5.2. Geschwindigkeit	82
		1.5.3. Beschleunigung	83
		1.5.4. Weg	83
		1.5.5. Intensität	83
	<u>1.6.</u>	Simulationsbereich	85
		1.6.1. Grenzen einzelner Bauteile	85
		1.6.2. Simulationsbereich für harmonische Sinusschwingungen	86
		1.6.3. Grenzen bei der Simulation nicht harmonischer Schwingungen	88
		1.6.4. Startposition	89
	1.7.	Spektrum realisierbarer Schüttelprofiltypen	90
		1.7.1. Theoretische Betrachtung der Modellschwingungen	90
		1.7.2. Experimentelle Bestimmung der Schüttelprofile	94
	1.8.	Leistungsgrenze der computergesteuerten Schüttelmaschine	98
		1.8.1. Maximale Frequenz	98
		1.8.2. Massenträgheit	101
	<u>1.9.</u>	Zusammenfassung	105
2	GERÄ	TE ZUR AUFNAHME VON BESCHLEUNIGUNGS-ZEIT-KURVEN	106
	<u>2.1.</u>	Beschleunigungssensor	106
	2.2.	Messung von Beschleunigungs-Zeit-Kurven	107
	2.3.	Kalibrierung des Beschleunigungssensors	108
3.	Амохі	CILLIN-TROCKENSÄFTE	112
	3.1.	Eigenschaften und Anwendung von Amoxicillin	112
	3.2.	Handelspräparate	115
		Charakterisierung der Handelspräparate	119
			120

			3.3.2. Ergebnisse	130
	4	Sons	STIGE GERÂTE	140
		<u>4.1.</u>	HPLC-System	140
		4.2.	Probenteiler	142
		<u>4.3.</u>	Geräteliste	143
D.E	XPER	IMENT	ELLER TEIL UND ERGEBNISSE	145
D.I.U	JNTER	SUCHU	NG DES SCHÜTTELVERHALTENS DER ANWENDER	_147
	1.	Expe	RIMENTELLER TEIL	147
		<u>1.1.</u>	Einleitung	147
			Datenerfassung	148
			1.2.1. Durchführung der Studie	148
			1.2.2. Aufbereitung der erfassten Daten	148
		<u>1.3.</u>	Auswertung der Studie	152
			1.3.1. Klassifizierung der Beschleunigungsprofile	152
			1.3.2. Kenngrößen des Schüttelvorgangs	155
			1.3.3. Statistische Auswertung	157
	<u>2.</u>	ERGE	BNISSE	160
			Probanden	160
		2.2.	Beobachtete Schüttelprofile	162
		2.3.	Klassifizierung der beobachteten Schüttelprofile	166
		2.4.	Statistische Bewertung der beobachteten Schüttelprofile	168
			2.4.1. Deskriptive Statistik	168
			2.4.2. Verteilungen	170
			2.4.3. Varianzanalyse	171
			2.4.4. Korrelationsanalyse	175
		<u>2.5.</u>	Zusammenfassung	178
D.II.	VERGL	EICH D	ER BEOBACHTUNGEN MIT DEM SIMULATIONSBEREICH DER	
5	<u> Schüt</u>	TELMA	SCHINE	181
D.III.	<u>Umse</u>	TZUNG	DER BEOBACHTETEN SCHÜTTELPROFILE AUF DER SCHÜTTELMASC	HINE
				183
	<u>1.</u>	UMSE	TZUNG DER BEOBACHTETEN SCHÜTTELPROFILE DURCH INTEGRATION	183
		1.1.	Finleitung	183

	1.2.	Vier zufällig ausgewählte Schüttelprofile	184
	<u>1.3.</u>	Analyse der ausgewählten Schüttelprofile	187
		1.3.1. Statistische Methode	187
		1.3.2. Ergebnisse	189
	1.4.	Wegberechnung durch numerische Integration	194
		1.4.1. Beispiel 1	195
		1.4.2. Beispiel 2	198
		1.4.3. Beispiel 3	200
		1.4.4. Beispiel 4	203
	1.5.	Umsetzung auf der Schüttelmaschine	205
	<u>1.6.</u>	Zusammenfassung der bisherigen Ergebnisse	208
	<u>1.7.</u>	Diskussion	209
		1.7.1. Biomechanik des menschlichen Arms	209
		1.7.2. Die Aufnahme der Schüttelprofile im Schwerefeld der Erde	210
		1.7.3. Drehung des Sensors aus seiner sensitiven Achse	210
		1.7.4. Erläuterung der Problematik mit Hilfe eines Modells	211
		1.7.5. Diskussion der Ergebnisse	212
		1.7.6. Fazit und Lösungsvorschlag	213
2.	Mode	ELLBILDUNGSANSATZ	215
		2.1.1. Randbedingungen	215
		2.1.2. Vorüberlegung	216
		2.1.3. Modellbildung	219
		2.1.4. Modelle der vier ausgewählten Schüttelprofile	221
		2.1.5. Ergebnisse	222
		2.1.6. Zusammenfassung und Diskussion	227
		2.1.7. Vorschlag eines normierten Beschleunigungsprofils zur Untersuc	:hung
		der Redispergierbarkeit von Suspensionszubereitungen	227
3.	ERGE	BNISSE	230
	3.1.	Einleitung	230
	3.2.	Das normierte Beschleunigungsprofil	231
		3.2.1. Periodische harmonische Schwingungen	231
		3.2.2. Ein- und Ausschwing-Phase	232
		3.2.3. Das normierte Beschleunigungsprofil	233
	3.3.	Die Steuerdatei	234

INHALTSVERZEICHNIS

<u>34</u>
<u>35</u>
<u> 36</u>
<u>37</u>
<u>38</u>
<u>39</u>
11
<u>41</u>
<u>41</u>
<u> 42</u>
<u>42</u>
<u>42</u>
44
<u> 46</u>
<u>46</u>
<u>47</u>
<u>47</u>
<u>48</u>
<u> 49</u>
<u>49</u>
<u>49</u>
<u>52</u>
_
<u>53</u>
<u>53</u>
<u>55</u>
<u>56</u>
<u>57</u>
<u>59</u>
<u>i1</u>
32
<u>33</u>

	<u>3.</u>	DARSTELLUNG DER VOM MENSCHEN AUSGEFÜHRTEN SCHÜTTELBEWEGU	ING AUF
		DER LINEAREINHEIT DER SCHÜTTELMASCHINE	265
	<u>4.</u>	REDISPERGIERUNG	267
F.ZU	SAM	MENFASSUNG	271
G.AN	IHAN	IG	273
	<u>1.</u>	KALIBRIERUNG DER COMPUTERGESTEUERTE SCHÜTTELMASCHINE	273
	<u>2.</u>	SCHÜTTELWINKEL	274
	<u>3.</u>	ABWEICHUNG VON DER EINDIMENSIONALEN BEWEGUNG	275
<u>H.LIT</u>	ERA	TURVERZEICHNIS	277
<u>I.SYN</u>	/BO	LE UND ABKÜRZUNGEN	289
	1	LATEINISCHE SYMBOLE	289
	<u>2.</u>	GRIECHISCHE SYMBOLE	293
	3.	ABKÜRZUNGEN	294